
BRAND. Broad Research in Accounting, Negotiation, and Distribution
ISSN 2067-8177, Volume 1, Issue 1, 2010

 1

Accounting Knowledge Representation in PROLOG Language

Bogdan Pătruţ
“Vasile Alecsandri” University of Bacău, Romania

bogdan@edusoft.ro

Abstract
This paper presents some original techniques for implementing accounting knowledge in

PROLOG language. We will represent rules of operation of accounts, the texts of accounting
operations, and how to compute the depreciation.

Keywords: accounting, knowledge representation, PROLOG, depreciation, natural
language processing

1. Introduction
The PROLOG programming language1 was developed specifically for problems of artificial

intelligence. PROLOG is based on first order predicate calculus. In a program we must to define a
set of predicates, and each predicates has its own clauses. The clauses represent facts and rules that
make the predicate to be true. A rule is seen as an implication A1∧A2∧...∧An→B, written in reverse
order: B←A1∧A2∧...∧An. For the operator „←” it is used the word „if” or the symbols „:-“.

In our research, we have developed several modules that can be used in the PROLOG
language representation of accounting knowledge. This paper is based on the result of [3], [4].

We used PROLOG for:
 represent the operating rules of the accounts;
 to implement an economic operation of the Romanian language directly in the formula

accounts it represents;
 to represent some knowledge of a procedural nature, such as the calculation of depreciation.

2. Representation of rules of operation of accounts and creation of log book on
accounting formulas
In order to achieve a log book must write all accounting items, so we need accounting

formulas. These represents a codification of economic operations carried out at different times.
An accounting analysis is essential, so we need a codification of rules of operation of accounts (see
Table 1).

We define predicates for Prolog:
• determine the type of account (active or passive (capital or liability));
• link between an account and accordingly the patrimonial element;
• changes to economic elements of patrimony (increase or decrease);
• crediting or debiting an account.

Table 1 The rules of operations of accounts2

1 If X is an active account, X reflects Y and Y increases, then X is debited.
2 If X is an active account, X reflects Y and Y decreases, then X is

credited..
3 If X is a liability account, X reflects Y and Y increases, then X is credited.
4 If X is a liability account, X reflects Y and Y decreases, then X is debited..

1 More about Prolog and its uses in artificial intelligence systems can be found in [1].
2 The table reffers to active, capital or liability accounts; source [2].

BRAND. Broad Research in Accounting, Negotiation, and Distribution
ISSN 2067-8177, Volume 1, Issue 1, 2010

 2

The predicates active_account(integer) and liability_account(integer) each have
a single argument, which is an accounting symbol. The clauses of these predicates give us a picture
of all types of accounts, in the general plan of accounts.

The predicate reflects(integer, string) concerns the link between an accounting
symbol and the accounting matter which it reflects in accounting. For example, the clause
reflects(401,"Debts to suppliers") means that the account 401 reflects debts to suppliers.

Predicates increases(string, real, integer) and decreases(string, real,

integer) each have three arguments. First refers to a patrimony element, the second to an amount
(of increasing/decreasing) of that account, and the third represents the time moment of the
operation3.

For example, the clause decreases("Debts to suppliers", 300000, 2) represents that
the debts to suppliers decreases with 300.000 RON, at moment 2.

Finally, the predicates is_debited(integer, real, integer) and
is_credited(integer, real, integer) specify the ammount (the second argument) which is
debited/credited to an account (the first argument) when given time for the third argument.

The Program 1 is a representation in PROLOG of the rules of operation of accounts. The
predicate record will generate the list of all accounting formulas (records).

Program 1. PROLOG representation of the rules of operation of accounts

predicates
 active_accont (integer)
 liability_account (integer)
 reflects(integer,string)
 increases(string,real,integer)
 decreases(string,real,integer)
 is_debited(integer,real,integer)
 is_credited(integer,real,integer)
 record(integer,integer,real,integer)
clauses
 active_account (626).
 active_account(531).
 liability_account(401).

 reflects(626,"Post and telecommunications expenses").
 reflects(401,"Suppliers").
 reflects(531,"Cash").

 is_debited(X,S,M) if active_account(X),

reflects(X,Y), increases(Y,S,M).
 is_debited(X,S,M) if liability_account(X),

reflects(X,Y), decreases(Y,S,M).
 is_credited(X,S,M) if liability_accont (X),

reflects(X,Y), decreases(Y,S,M).
 is_credited(X,S,M) if liability_account(X),

reflects(X,Y), increases(Y,S,M).

 record(D,C,S,M) if is_debited(D,S,M), is_credited(C,S,M),
 write(M,". ",D,"=",C," Amount: ",S," lei "),nl.

 increases("Post and telecommunication expenses", 300000,1).
 increases("Suppliers",300000,1).
 decreases("Suppliers", 300000,2).
 decreases("Cash", 300000,2).
goal
 record(X,Y,S,M), fail.

3 Obviously, when time could be more than a whole number, but we considered the type integer to simplify exposure.

BRAND. Broad Research in Accounting, Negotiation, and Distribution
ISSN 2067-8177, Volume 1, Issue 1, 2010

 3

3. Translating the accounting operations from natural language to equations
In computer science literature, the procedure of understanding the text of an accounting

operation can be called "parsing". It consists by a syntactic analysis, followed by an "interpretation"
and an "execution" of the analyzed text.

Thus, we propose that by providing a description of our operations and accounting system,
to receive the appropriate accounting equation.

The program we developed is below. It underpins an intelligent agent that may associate an
accounting equation to any sentences of natural language, freely expressed, which describes the
operation of accounts.

For example, we would like to get answers to the right for phrases like those on the left
(Table 2).

Table 2. Examples of translations from Romanian language into accounting equations

Se subscrie un capital social în valoare de 3000 lei.
(Subscribed share capital is worth 3000 lei.) 456 = 1011, 3000 lei

Se depune, sub formă de aport în natură, un teren în valoare de 2000 lei.
(Is deposited as a contribution in kind, a field value of 2000 lei.) 2111 = 456, 2000 lei

Se înregistrează capitalul social vărsat de 3000 lei.
(Record paid up share capital 3,000 lei.) 1011 = 1012, 3000 lei

How can we achieve this? First will be a transformation of the sentences from their original

string form, into a list of strings, knowing that in PROLOG we can implement effective predicates
for working with lists. The predicate make_list will transform the original text of the accounting
operation into a list of words, i.e. make_list separates the original phrase into words. Then, the list
of words will draw the "word" which is the numerically amount (using the predicate get_amount).
This will be determined easily, because the amount starts with a digit. For things to be simplified,
we will remove the words that are not considered relevant for that phrase. Thus we will not consider
any prepositions or other words that appear in a given dictionary. Predicate which simplifies a list
goes through the list and examines each word. Every word is searched in a dictionary (using the
dictionary predicate, with its clauses) and if there is, then it is replaced by its standard version, all
taken from the dictionary. Other variants are considered synonymous. In the event that that word
isn’t in the dictionary, then it will not appear in the simplified list. After deletion of the
"insignificant" words, there is an alphabetical ordering of words left, made by the sort predicate,
which implements (recursively) a process of sorting by insertion. Thus, phrases like "se varsă
capitalul" or "capital vărsat" have the same meaning.

Finally, it is called the translation predicate, which carries out the desired translation,
yielding the accounting entry.

E.g.: consider the phrase "se subscrie un capital social în valoare de 3000 lei.".
After applying the first transformation (make_list), we obtain the list ["se", "subscrie", “un”

"capital", "social", “în", "valoare", "de", "3000", "lei"]. After that, the predicate get_amount will
select “3000” (lei) as amount, which will be displayed (at the end of execution of the program)
along with the rest of accounting entry.

Applying predicate simplify to the list of words obtained before, just stick with the list
["subscrie", "capital"], because it chooses inarticulately standard "capital" instead of "capitalul" and
other words that don’t appear in our dictionary will be considered insignificant. Then this list is
ordered alphabetically, resulting in the final list ["capital", "subscrie"], which, according to the
predicate translation leads to the accounting entry 456 = 1011, with the amount of 3000 lei.

The program below is purely demonstrative (program 2.). This system including this
fragment has included a database containing a multitude of variants of "translation" and other kind
of sentence processing, for exceptional cases or for optimization.

BRAND. Broad Research in Accounting, Negotiation, and Distribution
ISSN 2067-8177, Volume 1, Issue 1, 2010

 4

Program 2. Demonstrating how to implement a PROLOG translator that converts accounting operations from Romanian
language to accounting entries

domains
 accont=integer
 slist=string*
predicates
 dictionary(string,lista)
 member(string,lista)
 simplify(lista,lista)
 mak_list(string,lista)
 translate(lista,cont,cont)
 transform(string,cont,cont,integer)
 repeat
 run
 sort(lista,lista)
 insert(string,lista,lista)
 get_ammount(lista,integer)
clauses
 dictionary(terenuri,[terenuri,teren,suprafata,suprafete]).
 dictionary(constructii,[constructii,constructir,cladire,cladiri]).
 dictionary(subscrie,[subscrie,subscris]).
 dictionary(aport,[aport,contributie,adus]).
 dictionary(varsa,[varsa,varsat]).
 dictionary(capital,[capital, capitalul]).
 dictionary(rezerve,[rezerve]).
 dictionary(incorporeaza,[incorporeaza]).
 dictionary(rascumparare,[rascumparare]).
 dictionary(actiuni,[actiuni]).
 translate([capital,subscrie],456,1011).
 translate([capital,varsa],1011,1012).
 translate([aport,terenuri],2111,456).
 translate([aport,constructii],2121,456).
 translate([incorporeaza,rezerve],1061,1012).
 translate([actiuni,rascumparare],502,5121).
 member(C,[C|_]) if !.
 member(C,[_|Rest]) if membru(C,Rest).
 make_list("",[]) if !.
 make_list(S,L) if fronttoken(S,Cuv,S1), make_list(S1,L1),L=[Cuv|L1].
 get_amount([],0) if !.
 get_amount([X|_],Suma) if str_int(X,Suma), !.
 get_amount([_|Rest],Suma) if get_ammount(Rest,Suma).
 simplify([],[]) if !.
 simplify([Cap|Rest],L) if
 dictionary(CapStandard,Sinonime), member(Cap,Sinonime),
 simplificy(Rest,L1),L=[CapStandard|L1],!.
 simplify([_|Rest],L) if simplifica(Rest,L).
 transform(Propozitie,CD,CC,Suma) if
 make_list(Propozitie,L), get_ammount(L,Suma),
 simplificy(L,L1), sort(L1,L2), !, translate(L2,CD,CC).
 sort([X|Rest],S) if sort(Rest,R),insert(X,R,S).
 sort ([],[]).
 insert(X,[Y|Rest],[Y|Rest1]) if X>Y, insert(X,Rest,Rest1).
 insert(X,Rest,[X|Rest]).
 repeat.
 repeat if repeat.
 run if repeat, write(">>"), readln(Propozitie),
 transform(Propozitie,ContDebitat,ContCreditat,Suma),
 write(ContDebitat," = ",ContCreditat,", ",Suma," lei"), nl, fail.

BRAND. Broad Research in Accounting, Negotiation, and Distribution
ISSN 2067-8177, Volume 1, Issue 1, 2010

 5

4. Calculation of diminishing depreciation of fixed assets, without influence of the
obsolescence
The essential characteristic of assets (fixed assets) is repeated participation over several

years in economic and financial activity of the enterprise. They gradually exhausted as aging and
gradual recovery in the form of depreciation.

In terms of accounting, depreciation has more than one interpretation [5] [6]:
a) Finding the lost book value of assets suffered as a result of their depreciation time (physical wear
and obsolence);
b) The process of property transfer or sharing of costs, during the economic year of use of
depreciable assets;
c) Source of funding for renewal of assets;
d) In International Accounting Standards, depreciation is defined as "systematic allocation of the
depreciable amount of an asset over its useful life" [7] [8] [9].

All tangible and intangible assets, with some exceptions, are the subject of depreciation.
Criteria used to assess depreciation are the forms which takes lifetime, namely:
a) the period during which it is estimated that the company will use the asset subject to
amortization, which can be identified with the normal operation for fixed assets, depreciation or
narrow down by law, if intangible assets;
b) the volume of production achieved, i.e. the units of production or similar units that are expected
to be obtained by using business asset.

The methodology of calculation of depreciation depends on the criterion used to evaluate
depreciation, depreciation regime adopted etc. If depreciation after the normal operating, the
computing elements are:
a) AC = annual depreciation rate, determined by the relation AC = 100/DU, by DU understanding
normal use during the years covered in the catalog of useful life and classification of assets. If the
revaluation of fixed assets, based on legislation, annual depreciation percentage rate (AC) is
calculated by 100 compared to the normal duration of use remaining. Share so calculated will apply
the remaining amount and value date of entry;
b) VI = depreciable value, i.e. value of the fixed assets, or if necessary, update the remaining book
value, less the estimated residual value (sometimes can be ignored in the calculation of
depreciation).

Depreciation scheme used depends on how the asset is expected to bring economic
advantages to the undertaking. In the case of linear depreciation, operating costs are included
(uniformly) some fixed amount, set in proportion to the number of years of normal use life of fixed
assets.

In the case of diminishing depreciation, amortization process is accelerating in the first years
of operation of the asset by multiplying the linear damping rate with one of the following factors:
1.5 where the normal duration of use is between 2 and 5 years, 2.0 if it is between 6 and 10 years
respectively for a duration of 2.5 normal use of the asset more than 10 years. Then, switch to linear
depreciation for the remaining years [6]. In our program (program 3) the compute_coeficient (real,
real) sets the multiplier. The first argument is the duration of operation, and the second multiplier.
In Prolog, we have:

compute_coeficient(D,1.5) if 2<=D, D<=5,!.
compute_coeficient(D,2) if 5<D, D<=10, !.
compute_coeficient(D,2.5) if D>10.

Coefficient calculated with this predicate will be sent (as an argument, namely that the
argument of the last position (CD)) to the depreciation predicate. The depreciation predicate has
four actual type arguments. This was chosen because this type of data type integer was not
sufficiently comprehensive to represent large numbers (in the millions). Predicate is used to
calculate depreciation and annual depreciation and remaining value display end. The header of this
predicate is depreciation(S, N, A, R, CD). The first argument is the amount remaining amortized

BRAND. Broad Research in Accounting, Negotiation, and Distribution
ISSN 2067-8177, Volume 1, Issue 1, 2010

 6

(S), the second is the number of years remaining (N), the third annual depreciation will be even
diminishing (A) which will be displayed along with the remaining (R).

1) In the case of diminishing depreciation, without the influence of the obsolescence, (AD1)
in first year it is applied the depreciation rate to the input value. For subsequent years, the same rate,
but each times the remaining value. This calculation continues operating until the resulting annual
depreciation is equal to or less than linear annual depreciation calculated for the remaining period of
operation. Depreciation predicate is recursive, so that after calculation of depreciation for the
current year, it comes to calculating the following year and so on. The first possibility, we have the
following depreciation clause predicate:

depreciation(S,N,A,R,CD) if
 A1=S*CD/100,A2=S/N, A1>=A2, A=A1, R=S-A,
 write(": A=",A,", R=",R), nl,N1=N-1,
 depreciation(R,N1,_,_,CD).

Therefore, A1 is the variation diminishing value depreciation and amortization in the
amount of variant A2 is linear.

Comparing A1 to A2, if A1> = A2, the variant is still diminishing, in which A is A1 and his
place will be taken by R S = SA.

2) Since the A1 = A2, until the expiration of normal service to switch to annual depreciation
linear to the end.

Thus we have two clauses for predicate depreciation (second clause is the last year, end
table):

depreciation (S,N,A,R,CD) if
 A1=S*CD/100, A2=S/N, A1<A2, A=A2, R=S-A,
 write(". A=",A,", R=",R), nl, N1=N-1, R>0,
 depreciation(R,N1,_,_,CD).
 depreciation (S,N,A,R,CD) if
 A1=S*CD/100, A2=S/N, A1<A2, A=A2, R=S-A, R=0, !.

To illustrate, consider an asset with value input VI = 30000000 during normal use lei DU =
10 years. Therefore, the depreciation will be linear AC = 100/10 = 10% and 10% diminishing
balance depreciation rate x 2 = 20% (coefficient is 2). 4.3 Prolog program will display the
following:

DIMINISHING DEPRECIATION
WITHOUT THE INFLUENCE OF OBSOLESCENCE
Give the input value: 30000000
Give the normal usage in years:
10
: A=6000000, R=24000000
: A=4800000, R=19200000
: A=3840000, R=15360000
: A=3072000, R=12288000
: A=2457600, R=9830400
: A=1966080, R=7864320
. A=1966080, R=5898240
. A=1966080, R=3932160
. A=1966080, R=1966080
. A=1966080, R=0
Press the SPACE bar

We prefixed with the ":" years when diminishing depreciation rate is applied, respectively. "

during the linear version is used.

BRAND. Broad Research in Accounting, Negotiation, and Distribution
ISSN 2067-8177, Volume 1, Issue 1, 2010

 7

Program 3. Prolog representation of the procedure for calculating the diminishing depreciation, without the influence of
the obsolescence

 predicates
 depreciation (real,real,real,real,real)
 % suma, nr. de ani ramasi, ad, val ramasa, cota de am. degresiva
 calcul_coeficient(real,real)
 % durata de functionare => coeficientul de multiplicare
 clauses
 depreciation (S,N,A,R,CD) if
 A1=S*CD/100,A2=S/N, A1>=A2, A=A1, R=S-A,
 write(": A=",A,", R=",R), nl, N1=N-1,
 depreciation (R,N1,_,_,CD).
 depreciation (S,N,A,R,CD) if
 A1=S*CD/100, A2=S/N, A1<A2, A=A2, R=S-A,
 write(". A=",A,", R=",R), nl, N1=N-1, R>0, amortizare(R,N1,_,_,CD).
 depreciation (S,N,A,R,CD) if
 A1=S*CD/100, A2=S/N, A1<A2, A=A2, R=S-A, R=0, !.
 compute_coeficient(D,1.5) if 2<=D, D<=5,!.
 compute_coeficient(D,2) if 5<D, D<=10, !.
 compute_coeficient(D,2.5) if D>10.
 goal
 makewindow(1,7,0,"",0,0,25,80), clearwindow,

 write("DIMINISHING DEPRECIATION"),nl,
 write("WITHOUT THE INFLUENCE OF OBSOLESCENCE"),nl,

 write("Give the input value: "), readreal(VI),
 write("Give the normal usage in years:"), readreal(DU),

 CA=100/DU, compute_coeficient(DU,Coef), CD=CA*Coef,
 depreciation(VI,DU,_,_,CD).

5. Conclusions
We consider it necessary accounting knowledge representation in intelligent systems using

known methods: the calculation of-order predicates, semantic networks and production rules, but is
useful and discover new ways of representation. Knowledge includes rules, conceptual
representations, ideas, principles, abstractions, and how the representation and organization of
knowledge is an essential element of any intelligent system.

Knowledge representation is to find and achieve a correspondence between reality and a
symbolic domain that allows reasoning. Therefore, the representation of knowledge is captured
essential elements of a problem domain.

In our opinion, Prolog can be used to represent many accounting knowledge, including
procedural (computer) knowledge. In our research, we have developed several modules that can be
used in Prolog representation of accounting knowledge, such as implementation of economic
operations (written in natural language) directly in the formula book, or representation of
depreciation calculation.

6. References

[1] Bratko, I. 2006, Prolog Programming for Artificial Intelligence, Addison Wesley; 4rd edition
[2] Zaharie, D., Năstase, P., Albescu, F., Bojan, I., Mihai, F., Covrig, L., 1999, Sisteme expert.
Teorie şi aplicaţii, Editura Dual Tech, Bucureşti
[3] Pătruţ, B., 2004, Analiza şi înţelegerea textelor operaţiunilor contabile, folosind limbajul
Prolog, în Informatica Economică, nr. 3(23)-2002, A.S.E. Bucureşti
[4] Pătruţ, B., 2003, Tehnologia Microsoft Agent pentru învăţarea regulilor de funcţionare a
conturilor, in Informatica Economica, nr. 4(28)/2003, A.S.E. Bucureşti
[5] Colasse, B., 2005, Contabilitate generală, Editura Moldova Iaşi
[6] Pătruţ, V., Rotilă, A., Darie, V., Drehuţă, E., Gorbănescu, C., 1998, Manualul expertului
contabil şi al contabilului autorizat, Editura Agora, Bacău

BRAND. Broad Research in Accounting, Negotiation, and Distribution
ISSN 2067-8177, Volume 1, Issue 1, 2010

 8

[7] Epstein, B. J., Mîrza, A. A., 2005, Interpretarea şi aplicarea Standardelor Internaţionale de
Contabilitate şi Raportare Financiară, Wiley IFRS
[8] * * *, 2000, Standardele Internaţionale de Contabilitate 2000, International Accounting
Standards Committee, London UK, Editura Economică
[9] Duţescu, A., 2001, Ghid pentru înţelegerea şi aplicarea Standardelor Internaţionale de
Contabilitate, Editura CECCAR, Bucureşti

