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Abstract 
This paper shows how can be estimated the value of an option if we assume the double-

Heston model on a message-based architecture. For path trace simulation we will discretize 
continous model with an Euler division of time. 
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1. BSM model, Heston model, Double-Heston model 
From physical models, the following situation has reached acceptance: a financial asset 

interest rate follows a normal law, where the mean is the drift rate and the deviation is the volatility. 
This leads to a model that is currently accepted in finance:, the model of geometric Brownian 
motion. This model (known as Black–Scholes–Merton model in finance and financial engineering, 
see [1]) is a stochastic differential equation (1):  
 

dS(t) = m S(t) dt + s S(t) dB(t),  (1) 
 
where: 

a) (S(t), t≥0) is a stochastic process for the value of stock;  
b) m is a static parameter for the drift rate of return;  
c) s2 is a static parameter for the volatility of stock (s≥0);  
d) (B(t), t≥0) is a standard Wiener process.  

 
Another model is assumed by Heston (see [2]) and it consists from two stochastic 

differential equations. The Heston model corrects some inconsistency of the Black–Scholes–Merton 
model, for example:  
a) in reality, volatility is not a static parameter; it can be used as static value only on short periods 
(this value will obtain on calibration process, usual with a statistical estimator);  
b) on long periods, it is possible that interest rate series did not verify a normal law.  

The Heston model is described by the following coupled stochastic differential equations 
(2), (3):  
 

dS(t) = A(S(t), v(t), t) dt + B(S(t), v(t), t) dB1(t)      (2) 
   dv(t) = C(S(t), v(t), t) dt + D(S(t), v(t), t) dB2(t)     (3) 

 
where:  

a) (S(t), t≥0) is a stochastic process for value of stock;  
b) (v(t), t≥0) is a stochastic process for volatility of value of stock;  
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c) A(S, v, t), B(S, v, t), C(S, v, t), D(S, v, t) are three parametric algebraic functions;  
d) (B1(t), t≥0) and (B2(t), t≥0) are two r-correlated standard Wiener processes, i.e. (4):  

 
dB1(t) dB2(t) = r dt   (4) 

 
For Wiener processes, more details can be found in [3]. For the basic Heston model we have 

(5):  
a) A = S (t) m    
b) B = S (t) v(t)         (5) 
c) C = K (θ – v(t))   
d) D = ξ v(t)    

 
where:  
a) m is a drift of rate;  
b) θ  is long run average price volatility; as t tends to infinity, the expected value of v(t) tends to θ;  
c) K is the rate at which v(t) reverts to θ;  
d) ξ is the volatility of the volatility; as the name suggests, this determines the variance of v(t).  
 

Note that for C = D = 0 we obtain a static volatility model (Black–Scholes–Merton) (6) 
 

dv(t) = 0.  
 

The Double-Heston model (see [4]) is described by the following coupled stochastic 
differential equations (7), (8), (9): 
 

   dS(t) = M(S(t), v1(t), v2(t), t) dt + S1(S(t), v1(t), t) dB1(t) + S2(S(t), v2(t), t) dB2(t)   (7) 
dv1(t) = C1(S(t), v1(t), t) dt + D1(S(t), v1(t), t) dB3(t)      (8) 
dv2(t) = C2(S(t), v2(t), t) dt + D2(S(t), v2(t), t) dB4(t)     (9) 

 
where: 
 
a) (S(t), t≥0) is a stochastic process for value of stock;  
b) (v1(t), t≥0) is a stochastic process for half-volatility of value of stock;  
c) (v2(t), t≥0) is a stochastic process for half-volatility of value of stock;  
d) M(S, v1, v2, t), S1(S, v1, t), S2(S, v2, t), C1(S, v1, t), D1(S, v1, t), C2(S, v2, t), D2(S, v2, t) are 
three/four parametric algebraic functions;  
e) (B1(t), t≥0) and (B3(t), t≥0) are two r1-correlated standard Wiener processes, i.e. (10):  
 

dB1(t) dB3(t) = r1 dt   (10) 
 
f) (B2(t), t≥0) and (B4(t), t≥0) are two r2-correlated standard Wiener processes, i.e. (11):  
 

dB2(t) dB4(t) = r2 dt   (11) 
 
g) (B1(t), t≥0) and (B2(t), t≥0) are two independent standard Wiener processes.  
 

For the basic Double-Heston model we have (12): 
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a) M = S(t) m     
b) S1 = S(t) v1(t)    
c) S2 = S(t) v2(t)    
d) C1 = K1 (θ1-v1(t))      (12) 
e) C2 = K2 (θ2-v2(t))    
f) D1 = ξ1 v1(t)    
g) D2 = ξ2 v2(t)    

 
where: 
a) m is a drift of rate;  
b) θ1 is long run average price volatility; as t tends to infinity, the expected value of v1(t) tends to 
θ1;  
c) θ2 is long run average price volatility; as t tends to infinity, the expected value of v2(t) tends to 
θ2;  
d) K1 is the rate at which v1(t) reverts to θ1;  
e) K2 is the rate at which v2(t) reverts to θ2;  
f) ξ1 is the volatility of the volatility; as the name suggests, this determines the variance of v1(t); 
g) ξ2 is the volatility of the volatility; as the name suggests, this determines the variance of v2(t).  
 

Any financial derivative based on support with price S(t) at time t, with quotation at time t 
and a value S of support as V(S,v1, v2, t), where (12): 
 

++ →××× RTTTRV ],0[],0[],0[:  (12) 
 
and at maturity time T will generate an generate an payoff (13): 
 

payoff: R+ → R+ 
 

For example, European options CALL and PUT has payoff functions (14): 
 
    payoff (x) = max{0, x - E}    (14) 
    payoff (x) = max{0, E - x}  
 
where E is excercise price of option. 
 

2. Path trace simulation for option's pricing in generalized Double-Heston model 
First, we discretize continuous dimension of time. Let us denote (15): 
 

t[k] = t[0] + k∆, 0≤k≤N  (15) 
 
where: 

a) ∆ = (T-t[0])/N 
b) T is the maturity time of option; 
c) N is a number of time units (like days, hours, minutes, etc); note that sometimes is used 
transaction days - in this case, discretization hasn't a constant step. 
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Because for a standard Wiener process (B(t), t≥0) we can obtain a standard normal random 
variable series (X[B(t)], t≥0) with (16): 

dB(t) = X(dt)½    (16) 
 
we can build a simulation step as (17): 

 
M ← M(S[k], v1[k], v2[k], t[k])    
S1 ← S1(S[k], v1[k], t[k])     
S2 ← S2(S[k], v2[k], t[k])         
C1 ← C1(S[k], v1[k], t[k])     
D1 ← D1(S[k], v1[k], t[k])     
C2 ← C2(S[k], v2[k], t[k])    (17) 
D2 ← D2(S[k], v2[k], t[k]) 

Δ+Δ+Δ+←+ 2211][]1[ XSXSMkSkS  
v1[k+1] ← v1[k] + C1 ∆ + D1 Δ3X  

 v2[k+1] ← v2[k] + C2 ∆ + D2 Δ4X  
 
where X1 and X3 are r1-correlated, X2 and X4 are r2-correlated. A simple method to generate two r 
correlated normal values is (18): 
 

X ← NormRand()      
Z ← NormRand()       (18) 
Y ← r X + 21 r−  Z   

 
where NormRand is a function that produces independent real random numbers between 0 and 1, 
with normal distribution. 

A complete simulation for interval [t0, T] in N steps with evaluation of payoff is function 
Simulation, described below: 
 

FUNCTION Simulation() 
S ← S0 
v1 ← v10 
v2 ← v20 
t ← t0 
∆ ← (T – t0) / N 
FOR k ← 1, N 

t ← t + ∆ 
X1 ← NormRand() 
X2 ← NormRand() 
Y3 ← NormRand() 
Y4 ← NormRand() 

X3 ← r1 X1 + 2
11 r− Y3 

X4 ← r2 X2 + 2
21 r− Y4 

M ← M(S, v1, v2, t) 
S1 ← S1(S, v1, t) 
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S2 ← S2(S, v2, t) 
C1 ← C1(S, v1, t) 
D1 ← D1(S, v1, t) 
C2 ← C2(S, v2, t) 
D2 ← D2(S, v2, t) 
SS ← S + M ∆ + S1 X1 Δ  + S2 X2 Δ  
vv1 ← v1 + C1 ∆ + D1 X3 Δ  
vv2 ← v2 + C2 ∆ + D2 X4 Δ  
S ← SS 
v1 ← vv1 

v2 ← vv2 
END FOR 
RETURN payoff(S) 

END FUNCTION 
 

3. Monte Carlo method for Option's Pricing in Double-Heston Model 
Because for a level of acceptance α, where 0< α <1, a trust interval for E[S(T)] is [s - a, s + 

a], with (19): 
 

s = [Simulation() + Simulation() + ... + Simulation()] / N  (19) 
 
and (20): 

a = F(α/2)σ/M½    (20) 
 

where: 
a) N is number of simulations; 
b) F is the inverse function for CDF (cumulative distribution function) of standard normal 
distribution; it means that (21) or (22): 
 

Prob(s - a < E[payoff(S(T))] < s + a) = 1 – α (21) 
Prob(E[payoff(S(T))] = s + O(M½)) = 1 – α.  (22) 

 
where big–O notation is a Buchmann–Landau symbol (see [5]). Algorithm for evaluation of 
E[payoff(S(T))] is described below, in Serial_Simulation function: 

 
FUNCTION Serial_Simulation() 

LOCAL x 
x ← 0 
FOR i ← 1, M  

x ← x + Simulation()  
ENDFOR  
RETURN x/M 

END FUNCTION 
 

4. Further works 
Like in [6] we will to parallelize Monte Carlo algorithm for generalized Double-Heston 

model. Also, we want to build a Merton-Garman like PDE for option pricing like in [1] for 
generalized Double-Heston model, and build some parallelization of PDE numerical solving, like in 
[4]. 
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