Pricing in Multi-Heston Framework (I). Riccati equations

Tiberiu Socaciu
Stefan cel Mare University of Suceava, Faculty of Economics and Public Administration, Romania tibisocaciu@yahoo.com

Abstract

This article presents the ultimate in resolving a pricing framework's multi-Heston. Basically, we use the theorem Carr-Bakshi-Madan and a characteristic function method. In this first part, we integrate solutions of Riccati equations.

Keywords: Riccati ODE, Multi-Heston framework, financial derivatives, Carr-BakshiMadan theorem

1. Introduction

As an extension of Black-Scholes model (Black \& Scholes, 1973), Steven and Heston (1993) define a new model with a stochastic volatility. This model was extent by Christoffersen, Heston and Jacobs (2009) as a model with two stochastic semi-volatilities. In our opinion, this model can be generalized as a stochastic model with $\mathrm{q}(\mathrm{q}>0)$ stochastic partial-(or semi-) volatilities, see equation (1):

$$
\begin{gathered}
d S=\mu_{i} S d t+\sum_{j=1, q} v_{j}^{0,5} S d W_{j} \\
d v_{j}=\theta_{j}\left(\omega_{j}-v_{j}\right) d t+\xi_{j} v_{j}^{0,5} d B_{j}, j=1, q, \quad(1)
\end{gathered}
$$

where:

1. ω_{j} is long term j -th partial-volatility, $\mathrm{j}=1, \mathrm{q}$;
2. θ_{j} return factor to mean of j -th partial-volatility, $\mathrm{j}=1, \mathrm{q}$;
3. ξ_{j} volatility of j -th volatility, $\mathrm{j}=1, \mathrm{q}$;
4. B_{j} and W_{j} are Wiener standard processes correlated (δ_{ij} is Kronecker symbol):

$$
\begin{equation*}
d W_{j} d B_{j}=\rho_{j} \delta_{i j}, j=1, q, i=1, q ; \tag{2}
\end{equation*}
$$

5. S is a stochastic process for a traded asset;
6. v_{j} is j -th partial-volatility, $\mathrm{j}=1, \mathrm{q}$.

This paper is based on a draft (Socaciu, 2015). All of proofs can be obtained in extended form there.

2. Riccati equations integration

Lemma R1. For next linear ODE:

$$
\begin{equation*}
d Z(x) / d x=A Z(x)+B, \tag{3}
\end{equation*}
$$

where A and B are constants, solution is:

$$
\begin{equation*}
Z=-B A^{-1}+K \exp (A x), \tag{4}
\end{equation*}
$$

where K is an integration constant.
Proof. Multiply ODE with $\exp (-A x)$.

BRAND. Broad Research in Accounting, Negotiation, and Distribution ISSN 2067-8177,
Volume 6, Issues 1 \& 2, 2015
Lemma R2. For Riccati ODE:

$$
\begin{equation*}
d Z(x) / d x=a Z^{2}(x)+b Z(x)+c \tag{5}
\end{equation*}
$$

where Z is nonnegative and:

$$
Z(0)=0, \quad(6)
$$

with a, b and c constants, we have:

$$
\begin{equation*}
Z=0,5[b \pm D][E-1][1-G E]^{-1} a^{-1}, \tag{7}
\end{equation*}
$$

where:

$$
\begin{gathered}
D=\left[b^{2}+4 a c\right]^{0,5} \\
G=-[b \pm D][-b \pm D]^{-1}, \\
E=\exp (- \pm D x)
\end{gathered}
$$

Proof. After changing:

$$
Y=(Z-z)^{-1}, \quad(11)
$$

ODE becomes:

$$
\begin{equation*}
-Y^{\prime} Y^{2}=a\left[z^{2}+2 z Y^{-1}+Y^{-2}\right]+b\left[z+Y^{-1}\right]+c, \tag{12}
\end{equation*}
$$

or:

$$
\begin{equation*}
Y^{\prime}=-\left[a z^{2}+b z+c\right] Y^{2}-[b+2 a z] Y-a . \tag{13}
\end{equation*}
$$

If:

$$
\begin{equation*}
z=0,5[-b \pm D] a^{-1}, \tag{14}
\end{equation*}
$$

then:

$$
\begin{equation*}
a z^{2}+b z+c=0 \tag{15}
\end{equation*}
$$

and Riccati ODE becomes:

$$
Y^{\prime}= - \pm D Y-a
$$

and now apply Lemma R1:

$$
\begin{equation*}
Z(x)=0,5[-b \pm D] a^{-1}-\left[\pm a D^{-1}-K E\right]^{-1}, \tag{17}
\end{equation*}
$$

Because:

$$
Z(0)=0=0,5[-b \pm D] a^{-1}-\left[\pm a D^{-1}-K\right]^{-1}, \quad \text { (18) }
$$

then:

BRAND. Broad Research in Accounting, Negotiation, and Distribution ISSN 2067-8177,
Volume 6, Issues 1 \& 2, 2015

$$
\begin{equation*}
Z=0,5[b \pm D][E-1][1-G E]^{-1} a^{-1} \tag{19}
\end{equation*}
$$

Observation. The two solutions of Riccati ODE are identical.

Proof: Let:

$$
\begin{gather*}
E_{+}=\exp (-D t), \\
G_{+}=-[b+D][-b+D]^{-1} \tag{21}\\
E_{-}=\exp (+D t)=1 / E_{+} \tag{22}\\
G_{-}=-[b-D][-b-D]^{-1} \tag{23}
\end{gather*}
$$

then solutions are:

$$
\begin{gather*}
Z_{l}=0,5[b+D]\left[E_{+}-1\right]\left[1-G_{+} E_{+}\right]^{-1} a^{-1} \\
=0,5[b+D]\left[E_{+}-1\right]\left[1+[b+D][-b+D]^{-1} E_{+}\right]^{-1} a^{-1} \\
=0,5[b+D]\left[E_{+}-1\right][-b+D]\left[[-b+D]+[b+D] E_{+}\right]^{-1} a^{-1} \tag{24}
\end{gather*}
$$

and:

$$
\begin{gather*}
Z_{2}=0,5[b-D]\left[E_{-}-1\right]\left[1-E_{-} / e\right]^{-1} a^{-1} \\
=0,5[b-D]\left[E_{+}^{-1}-1\right]\left[1-[b-D][-b-D]^{-1} E_{+}^{-1}\right]^{-1} a^{-1} \\
=0,5[b-D]\left[1-E_{+}\right] E_{+}^{-1}[-b-D]\left[[-b-D]-[b-D] E_{+}^{-1}\right]^{-1} a^{-1} \\
=0,5[b-D]\left[1-E_{+}\right][-b-D]\left[[-b-D] E_{+}-[b-D]^{-1} a^{-1},\right. \tag{25}
\end{gather*}
$$

3. Integration of Riccati solutions

Corollary R3. Riccati equation:

$$
\begin{equation*}
d B / d t=0,5 \sigma^{2} B^{2}-(b-i k \rho \sigma) B-0,5 k(k+i) \tag{26}
\end{equation*}
$$

with initial condition:

$$
\begin{equation*}
B(0)=0 \tag{27}
\end{equation*}
$$

has solutions:

$$
\begin{equation*}
B(t)=S[1-E][1-G E]^{-1} \tag{28}
\end{equation*}
$$

where:

$$
\begin{gathered}
S=[b-i k \rho \sigma-D] \sigma^{-2},(29) \\
D=\left[(b-i k \rho \sigma)^{2}+\sigma^{2} k(k+i)\right]^{0,5},(30) \\
G=[b-i k \rho \sigma-D][b-i k \rho \sigma+D]^{-1}, \\
E=\exp (-D t)
\end{gathered}
$$

Proof: In Lemma R2 let:

$$
\begin{gather*}
Z \leftarrow B, \quad(33) \\
x \leftarrow t, \quad(34) \\
b \leftarrow-[b-i k \rho \sigma], \quad \text { (35) } \\
c \leftarrow-0,5 k(k+i), \quad \text { 36) } \tag{36}
\end{gather*}
$$

BRAND. Broad Research in Accounting, Negotiation, and Distribution ISSN 2067-8177,
Volume 6, Issues 1 \& 2, 2015

$$
a \leftarrow 0,5 \sigma^{2},
$$

Lemma R4. If B is solution of Riccati equation:

$$
\begin{equation*}
d B / d t=0,5 \sigma^{2} B^{2}-(b-i k \rho \sigma) B-0,5 k(k+i) \tag{38}
\end{equation*}
$$

with initial condition:

$$
\begin{equation*}
B(0)=0, \tag{39}
\end{equation*}
$$

then:

$$
\begin{equation*}
\int B(t) d t=S\left[t+(G-1) G^{-1} D^{-1} \log (1-G E)+K\right], \tag{40}
\end{equation*}
$$

where K ia a constant and:

$$
\begin{gather*}
S=[b-i k \rho \sigma-D] \sigma^{-2}, \quad(41) \\
D=\left[(b-i k \rho \sigma)^{2}+\sigma^{2} k(k+i)\right]^{0,5},(42) \\
G=[b-i k \rho \sigma-D][b-i k \rho \sigma+D]^{-1}, \tag{43}\\
E=\exp (-D t) .
\end{gather*}
$$

Proof. With notation from Lemma R3, will have:

$$
\begin{gather*}
\int B(t) d t=\int S[1-E][1-G E]^{-1} d t=S \int[1-E][1-G E]^{-1} d t \\
=S \int[(1-G E)+(G-1) E][1-G E]^{-1} d t=S \int\left[1+[(G-1) E][1-G E]^{-1}\right] d t \\
=S\left[t+(G-1) G^{-1} D^{-1} \int G D E[1-G E]^{-1} d t\right]=S\left[t+(G-1) G^{-1} D^{-1} \log (1-G E)+K\right] . \tag{45}
\end{gather*}
$$

Corollary R5. If $\mathrm{B}_{\mathrm{j}}, \mathrm{j}=1, \mathrm{~m}$, are solutions of equations:

$$
\begin{equation*}
d B_{j} / d t=0,5 \sigma_{j}^{2} B_{j}^{2}-\left(b_{j}-i k \rho_{j} \sigma_{j}\right) B_{j}-0,5 k(k+i), j=1, m, \tag{46}
\end{equation*}
$$

with initial conditions:

$$
\begin{equation*}
B_{j}(0)=0, j=1, m, \tag{47}
\end{equation*}
$$

then next ODE:

$$
d A / d t=\sum_{j=1, m} b_{j} \theta_{j} B_{j}
$$

with initial condition:

$$
A(0)=0
$$

will be:

$$
\begin{equation*}
A(t)=\sum_{j=1, m} b_{j} \theta_{j}\left[S_{j} t-2 \sigma_{j}^{-2} \log \left(\left(1-G_{j} E_{j}\right) /\left(1-G_{j}\right)\right)\right], \tag{50}
\end{equation*}
$$

where:

BRAND. Broad Research in Accounting, Negotiation, and Distribution ISSN 2067-8177,
Volume 6, Issues 1 \& 2, 2015

$$
\begin{gather*}
D_{j}=\left(\left(b_{j}-i k \rho_{j} \sigma_{j}\right)^{2}+\sigma_{j}^{2} k(k+i)\right)^{0,5}, j=1, m, \tag{51}\\
E_{j}=\exp \left(-D_{j} t\right), j=1, m, \quad(52) \\
S_{j}=\left[b_{j}-i k \rho_{j} \sigma_{j}-D_{j}\right] \sigma_{j}^{-2}, j=1, m, \quad \text { (53) } \\
G_{j}=\left[b_{j}-i k \rho_{j} \sigma_{j}-D_{j}\right]\left[b_{j}-i k \rho_{j} \sigma_{j}+D_{j}\right]^{-1}, j=1, m . \tag{54}
\end{gather*}
$$

Proof. Apply Lemma R4 and will obtain:

$$
\begin{gather*}
A=\int \sum_{j=1, m} b_{j} \theta_{j} B_{j} d t=\sum_{j=1, m} b_{j} \theta_{j} \int B_{j} d t \\
=\sum_{j=1, m} b_{j} \theta_{j} S_{j}\left[t+\left(G_{j}-1\right) G_{j}^{-1} D_{j}^{-1} \log \left(1-G_{j} E_{j}\right)+K_{j}\right]+K . \tag{55}
\end{gather*}
$$

Now, from initial condition for $\mathrm{A}(0)$ obtain:

$$
\begin{equation*}
0=\sum_{j=1, m} b_{j} \theta_{j} S_{j}\left[\left(G_{j}-1\right) G_{j}^{-1} D_{j}^{-1} \log \left(1-G_{j}\right)+K_{j}\right]+K, \tag{56}
\end{equation*}
$$

wherefrom will obtain integration constant K as:

$$
\begin{equation*}
K=-\sum_{j=1, m} b_{j} \theta_{j} S_{j}\left[\left(G_{j}-1\right) G_{j}^{-1} D_{j}^{-1} \log \left(1-G_{j}\right)+K_{j}\right] \tag{57}
\end{equation*}
$$

Return to solution with replacing K:

$$
\begin{gather*}
A=\sum_{j=1, m} b_{j} \theta_{j} S_{j}\left[t+\left(G_{j}-1\right) G_{j}^{-1} D_{j}^{-1} \log \left(1-G_{j} E_{j}\right)+K_{j}\right] \\
-\sum_{j=1, m} b_{j} \theta_{j} S_{j}\left[\left(G_{j}-1\right) G_{j}^{-1} D_{j}^{-1} \log \left(1-G_{j}\right)+K_{j}\right]=\sum_{j=1, m} b_{j} \theta_{j} S_{j}\left[t+\left(G_{j}-1\right) G_{j}^{-1} D_{j}^{-1} \log \left(1-G_{j} E_{j}\right)\right. \\
\left.\quad+K_{j}-\left(G_{j}-1\right) G_{j}^{-1} D_{j}^{-1} \log \left(1-G_{j}\right)-K_{j}\right] \\
=\sum_{j=1, m} b_{j} \theta_{j}\left[S_{j} t+S_{j}\left(G_{j}-1\right) G_{j}^{-1} D_{j}^{-1} \log \left(\left(1-G_{j} E_{j}\right) /\left(1-G_{j}\right)\right)\right], \tag{58}
\end{gather*}
$$

Because:

$$
\begin{gathered}
S_{j}\left(G_{j}-1\right) G_{j}^{-1} D_{j}^{-1}=\left[b_{j}-i k \rho_{j} \sigma_{j}-D_{j}\right] \sigma_{j}^{-2}\left\{\left[b_{j}-i k \rho_{j} \sigma_{j}-D_{j}\right]\left[b_{j}-i k \rho_{j} \sigma_{j}+D_{j}\right]^{-1}\right. \\
-1\}\left[b_{j}-i k \rho_{j} \sigma_{j}-D_{j}\right]^{-1}\left[b_{j}-i k \rho_{j} \sigma_{j}+D_{j}\right] D_{j}^{-1}=\sigma_{j}^{-2}\left\{\left[b_{j}-i k \rho_{j} \sigma_{j}-D_{j}\right]\left[b_{j}-i k \rho_{j} \sigma_{j}+D_{j}\right]^{-1}\right. \\
-1\}\left[b_{j}-i k \rho_{j} \sigma_{j}+D_{j}\right] D_{j}^{-1}=\sigma_{j}^{-2}\left\{\left[b_{j}-i k \rho_{j} \sigma_{j}-D_{j}\right]\left[b_{j}-i k \rho_{j} \sigma_{j}+D_{j}\right]^{-1}\left[b_{j}-i k \rho_{j} \sigma_{j}+D_{j}\right]\right. \\
\left.-\left[b_{j}-i k \rho_{j} \sigma_{j}+D_{j}\right]\right\} D_{j}^{-1}=\sigma_{j}^{-2}\left\{\left[b_{j}-i k \rho_{j} \sigma_{j}-D_{j}\right]-\left[b_{j}-i k \rho_{j} \sigma_{j}+D_{j}\right]\right\} D_{j}^{-1} \\
=\sigma_{j}^{-2}\left[-2 D_{j}\right] D_{j}^{-1}=-2 \sigma_{j}^{-2}, \quad \text { (59) }
\end{gathered}
$$

then:

$$
\begin{equation*}
A=\sum_{j=1, m} b_{j} \theta_{j}\left[S_{j} t-2 \sigma_{j}^{-2} \log \left(\left(1-G_{j} E_{j}\right) /\left(1-G_{j}\right)\right)\right] \tag{60}
\end{equation*}
$$

4. Next steps

Next step is to build characteristic function (Christoffersen, Heston \& Jacobs, 2009) based on affine form of process. Identifying of constants in affine form in part of characteristic function will be an appeal at our results in 3rd paragraph. After obtaining characteristic functions, using

BRAND. Broad Research in Accounting, Negotiation, and Distribution ISSN 2067-8177,
Volume 6, Issues 1 \& 2, 2015
Carr-Bakshi-Medan theorem we can build an analytic solution for european call pricing problem in multi-Heston model.

5. Acknowledgment

This paper has been financially supported within the project entitled "Routes of academic excellence in doctoral and post-doctoral research, contract number POSDRU/159/1.5/S/137926, beneficiary: Romanian Academy, the project being co-financed by European Social Fund through Sectoral Operational Programme for Human Resources Development 2007-2013.

References

Black, F., Scholes, M. (1973). The Pricing of Options and Corporate Liabilities, in Journal of Political Economy, 81 (3), pp. 637-654, last access: 20.06.2014. Retrieved from: https://www.cs.princeton.edu/courses/archive/fall09/cos323/papers/black_scholes73.pdf
Christoffersen, P., Heston, S. \& Jacobs, K. (2009). The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work so Well, in Management Science, preprint SSRN, 20.02.2009, last access: 28.12.2013. Retrieved from: http://papers.ssrn.com/sol3/papers.cfm?abstract id=961037
Socaciu, T. (draft in progress to be finished and defended in 2015) Pricing-ul derivatelor financiare in a Heston framework, post-doctoral thesis, Bucharest, Romanian Academy.
Steven L., Heston, A. (1993). Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, in The Review of Financial Studies, volume 6, number 2, pp. 327-343, last access: 1.12.2009. Retrieved from:
http://www.javaquant.net/papers/Heston-original.pdf

