BRAND. Broad Research in Accounting, Negotiation, and Distribution ISSN 2067-8177, Volume 6, Issues 1 & 2, 2015

Black-Scholes formula - a Heston approach

Bogdan Patrut Vasile Alecsandri University of Bacau, Faculty of Sciences, Romania bogdan@edusoft.ro

Tiberiu Socaciu Stefan cel Mare University of Suceava, Faculty of Economics and Public Administration, Romania tibisocaciu@yahoo.com

Abstract

In this paper we will compare Black-Scholes formula with a particular case of Heston formula, both solutions of the same problem.

Keywords: Black-Scholes model, Heston model, comparing analytic solutions.

1. Introduction

As an extension of Black and Scholes (1973) model:

$$dS = \mu S \, dt + \sigma^{0.5} S \, dW, \quad (1)$$

where

- a) W is an Wiener process;
- b) μ is a constant named drift;
- c) σ is a constant named volatility;
- d) S is a process for a traded asset.

Steven and Heston (1993) define a new model with a stochastic volatility, see equation (2):

$$dS = \mu S dt + v^{0.5} S dW$$
$$dv = \theta (\sigma - v) dt + \xi v^{0.5} dB, \quad (2)$$

where:

- a) ω is long term of volatility;
- b) θ is return factor to mean of volatility (σ);
- c) ξ is volatility of volatility;
- d) B and W are Wiener standard processes ρ -correlated;
- e) S is a stochastic process for a traded asset;
- f) v is a stochastic process for volatility.

This model was extended by Christoffersen, Heston and Jacobs (2009) as a model with two stochastic semi-volatilities. In our opinion, this model can be generalized as a stochastic model with q (q>0) stochastic partial-(or semi-)volatilities.

SDE for BS	$dS = \mu S dt + \sigma^{0.5} S dW$
model	
Analytic	$V(s,t) = N(d_1) S - N(d_2) E exp(-r (T-t))$
solutions for	$d_{I} = \sigma^{-1} (T-t)^{-0.5} [ln(S/E) + (r + \frac{1}{2} \sigma^{2})(T-t)]$
european calls	$d_2 = \sigma^{-1} (T-t)^{-0.5} [ln(S/E) + (r - \frac{1}{2} \sigma^2)(T-t)]$

2. Solutions of tho	models in	mirror
---------------------	-----------	--------

BRAND. Broad Research in Accounting, Negotiation, and Distribution ISSN 2067-8177,
--

Volume 6. Issues 1 & 2. 2015		
with E strike	$N(x) - pdf \ of \ N(0,1)$ distribution	
with BS model		
Official	(Black, F. & Scholes, M., 1973)	
refferences for		
model and		
analytic		
solutions for BS		
model		
SDEs for H	$dS = \mu S dt + v^{0.5} S dW$	
model	$dv = \theta \left(\sigma - v \right) dt + \xi v^{0.5} dB$	
Analytic	$V(s,v,t) = S P_{I} - E \exp(-r (T-t)) P_{2}$	
solutions for	$1 1 \int_{c}^{\infty} \left[\exp(i\varphi \log(E)) f_i(x, v, t, \varphi) \right]_{c}$	
european calls	$P_j = \frac{1}{2} + \frac{1}{\pi} \int \operatorname{Re} \left[\frac{1}{2} + \frac{1}{2} \frac{\partial \varphi}{\partial \varphi} \right] d\varphi$	
with E strike	$2 n_0 [i \varphi]$	
with H model	$f_j(x, v, t, z) = exp(C_j(T - t, z) + D_j(T - t, z) z + i z x)$	
	$C_{j}(t, z) = r z i t + a [(b_{j} - \rho \zeta z i + d_{j}) t - 2 log(1 - g_{j} exp(d_{j} r))]$	
	$+2\log(1-g_i)/\xi^2$	
	$D_{j}(t, z) = [(b_{j} - \rho \xi z i + d_{j}] [1 - exp(d_{j} r))] \xi^{2} [1 - exp(d_{j} r))]^{-1}$	
	$g_j = [b_j - \rho \xi z i + d_j] [b_j - \rho \xi z i - d_j]^T$	
	$d_{j} = [(b_{j} - \rho \xi z i)^{2} - \xi^{2} (2 u_{j} z i - z^{2})]^{0,5}$	
	$u_1 = \frac{1}{2}$	
	$u_2 = -\frac{1}{2}$	
	$a = k \theta$	
	$b_I = k + \lambda - \rho \xi$	
	$b_2 = k + \lambda$	
	<i>j=1,2</i>	
Official	(Steven & Heston, 1993)	
references for		
model and		
analytic solutions		
for H model		

3. Links beetween solutions?

We can point that Heston model is a generalization of Black-Scholes model. For

id est:

$$v = \sigma$$
 (3)

 $dv = 0 \quad (4)$

the two models are identical.

But

$$dv = 0$$
 (5)

is same with

 $\theta = \xi = 0$, (6)

that means:

BRAND. Broad Research in Accounting, Negotiation, and Distribution ISSN 2067-8177, Volume 6, Issues 1 & 2, 2015 $a=k\ \theta=0, \quad (7)$

$$b_{1} = k + \lambda - \rho \xi = k + \lambda = b_{2}, \quad (8)$$

$$d_{j} = [(b_{j} - \rho \xi z i)^{2} - \xi^{2} (2 u_{j} z i - z^{2})]^{0,5} = [(b_{j} - \rho \xi z i)^{2}]^{0,5} = |b_{j}|, \quad (9)$$

$$g_{j} = [b_{j} - \rho \xi z i + d_{j}] [b_{j} - \rho \xi z i - d_{j}]^{-1} = [b_{j} + |b_{j}|] [b_{j} - |b_{j}|]^{-1} = 0, \quad (10)$$

if assume that

 $k + \lambda < 0$

$$D_{j}(t, z) = [(b_{j} - \rho \xi z i + d_{j}] [1 - exp(d_{j} r))] \xi^{2} [1 - exp(d_{j} r))]^{-1} = [b_{j} + |b_{j}|] [1 - exp(|b_{j}| r))] \xi^{2} [1 - exp(|b_{j}| r))]^{-1} = 0, \quad (11)$$

if assume that

$$[b_j + /b_j] \xi^2 = 0/0 = 0, \quad (12)$$

$$C_{j}(t, z) = r z i t + a \left[(b_{j} - \rho \xi z i + d_{j}) t - 2 \log(1 - g_{j} \exp(d_{j} r)) + 2 \log(1 - g_{j}) \right] \xi^{2} = r z i t, \quad (13)$$

if assume that

$$+ a \xi^2 = 0/0 = 0.$$
 (14)

$$f_j(x, v, t, z) = exp(C_j(T-t, z) + D_j(T-t, z) z + i z x) = exp(r z i t + i z x)$$

$$P_{j} = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{\infty} \operatorname{Re} \left[\frac{\exp(i\varphi \log(E)) f_{j}(x, v, t, \varphi)}{i\varphi} \right] d\varphi = \frac{1}{2} + \int_{0}^{\infty} \operatorname{Re} \left[\exp(i z \log(E)) \exp(r z i t + i z x) i^{-1} z^{-1} \right] dz = \frac{1}{2} + \int_{0}^{\infty} \operatorname{Re} \left[\left[\cos(z \log(E)) + i \sin(z \log(E)) \right] \left[\cos(r z t + z x) \right] i^{-1} z^{-1} \right] dz = \frac{1}{2} + \int_{0}^{\infty} \cos(z \log(E)) \sin(r z t + z x) + \sin(z \log(E)) \cos(r z t + z x) \right] z^{-1} dz = \frac{1}{2} + \int_{0}^{\infty} \left[\sin(z \log(E) + r z t + z x) \right] z^{-1} dz. \quad (15)$$

4. Comments and further works

We expected that the two solutions are identical. Because not getting the same result on the two different routes, results that Heston solution has a little inconsistency on some particular cases, like $\xi = 0$ (we use that $0/\xi = 0$!). Therefore, a revision of the solution Heston by treating individual cases. We intend to do so in the future.

5. Acknowledgment

+

This paper has been financially supported within the project entitled "Routes of academic excellence in doctoral and post-doctoral research, contract number POSDRU/159/1.5/S/137926, beneficiary: Romanian Academy, the project being co-financed by European Social Fund through Sectoral Operational Programme for Human Resources Development 2007-2013.

BRAND. Broad Research in Accounting, Negotiation, and Distribution ISSN 2067-8177, Volume 6, Issues 1 & 2, 2015

References

- Black, F. & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities, in *Journal of Political Economy*, *81 (3)*, *pp. 637-654*, last access: 20.06.2014. Retrieved from: https://www.cs.princeton.edu/courses/archive/fall09/cos323/papers/black_scholes73.pdf
- Christoffersen, P., Heston, S. & Jacobs, K. (2009). The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work so Well, in *Management Science, preprint SSRN, 20.02.2009*, last access: 28.12.2013. Retrieved from: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=961037
- Steven L. & Heston, A. (1993). Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, in *The Review of Financial Studies, volume 6, number 2, pp. 327-343*, last access: 1.12.2009. Retrieved from: <u>http://www.javaquant.net/papers/Heston-original.pdf</u>