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Abstract 

In this paper we will compare Black-Scholes formula with a particular case of Heston 

formula, both solutions of the same problem. 
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1. Introduction 

As an extension of Black and Scholes (1973) model: 

 

dS = µS dt + σ
0,5

S dW,   (1)  

 

where 

a) W is an Wiener process; 

b) µ is a constant named drift; 

c) σ is a constant named volatility; 

d) S is a process for a traded asset. 

 

Steven and Heston (1993) define a new model with a stochastic volatility, see equation (2): 

 

dS = µS dt + v
0,5

S dW  

dv = θ (σ – v) dt + ξ v
0,5

 dB,   (2)  

 

where: 

a) ω is long term of volatility; 

b) θ is return factor to mean of volatility (σ); 

c) ξ is volatility of volatility; 

d) B and W are Wiener standard processes ρ-correlated; 

e) S is a stochastic process for a traded asset; 

f) v is a stochastic process for volatility. 

 

This model was extended by Christoffersen, Heston and Jacobs (2009) as a model with two 

stochastic semi-volatilities. In our opinion, this model can be generalized as a stochastic model with 

q (q>0) stochastic partial-(or semi-)volatilities. 

 

 

2. Solutions of tho models in mirror 

SDE for BS 

model 

dS = µ S dt + σ
0,5 

S dW 

Analytic 

solutions for 

european calls 

V(s,t) = N(d1) S – N(d2) E exp(–r (T – t)) 

d1 = σ
-1 

(T – t)
-0,5 

[ln(S/E) + (r + ½ σ
2
)(T – t)] 

d2 = σ
-1 

(T – t)
-0,5 

[ln(S/E) + (r – ½ σ
2
)(T – t)] 
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with E strike 

with BS model 

N(x) – pdf of N(0,1) distribution
 

Official 

refferences for 

model and 

analytic 

solutions for BS 

model 

(Black, F. & Scholes, M., 1973) 

SDEs for H 

model 

dS = µS dt + v
0,5

S dW 

dv = θ (σ – v) dt + ξ v
0,5

 dB 

Analytic 

solutions for 

european calls 

with E strike 

with H model 

V(s,v,t) = S P1– E exp(–r (T – t)) P2 
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fj(x, v, t, z) = exp(Cj(T – t, z) + Dj(T – t, z) z + i z x) 

Cj(t, z) = r z i t + a [(bj – ρ ξ z i + dj) t– 2 log(1 – gj exp(dj r))  

+ 2 log(1 – gj)] ξ
-2 

Dj(t, z) = [(bj – ρ ξ z i + dj] [1 – exp(dj r))] ξ
-2 

[1 – exp(dj r))]
-1 

gj = [bj – ρ ξ z i + dj] [bj – ρ ξ z i – dj]
-1 

dj = [(bj –ρ ξ z i)
2 

– ξ
2 

(2 uj z i – z
2
)]

0,5 

u1 = ½ 

u2 = –½ 

a = k θ 

b1 = k + λ – ρ ξ 

b2 = k + λ 

j=1,2 

Official 
references for 
model and 
analytic solutions 
for H model 

(Steven & Heston, 1993) 

 

 

3. Links beetween solutions? 

We can point that Heston model is a generalization of Black-Scholes model. For 

 

v = σ   (3) 

id est: 

dv = 0   (4) 

 

the two models are identical.  

 

But 

 

dv = 0   (5) 

 

is same with 

 

θ = ξ = 0,   (6) 

 

that means: 
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a = k θ = 0,   (7) 

 

b1 = k + λ – ρ ξ = k + λ = b2 ,   (8) 

 

dj = [(bj –ρ ξ z i)
2 

– ξ
2 

(2 uj z i – z
2
)]

0,5
 = [(bj –ρ ξ z i)

2
]

0,5
 = |bj|,   (9) 

 

gj = [bj – ρ ξ z i + dj] [bj – ρ ξ z i – dj]
-1

 = [bj + |bj|] [bj – |bj|]
-1

 = 0,   (10) 

 

if assume that  

 

k + λ < 0  

 

Dj(t, z) = [(bj – ρ ξ z i + dj] [1 – exp(dj r))] ξ
-2 

[1 – exp(dj r))]
-1

 = [bj + |bj|] [1 – exp(|bj| r))] ξ
-2 

[1 –  

 

exp(|bj| r))]
-1

 = 0,    (11)  

 

if assume that  

 

[bj + |bj|] ξ
-2

 = 0/0 = 0,   (12) 

 

Cj(t, z) = r z i t + a [(bj – ρ ξ z i + dj) t– 2 log(1 – gj exp(dj r)) + 2 log(1 – gj)] ξ
-2 

= r z i t,   (13) 

 

if assume that   

 

+ a ξ
-2 

= 0/0 = 0.   (14) 
 

fj(x, v, t, z) = exp(Cj(T – t, z) + Dj(T – t, z) z + i z x) = exp(r z i t + i z x) 
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= ½ + 



0

Re [ exp(i z log(E)) exp(r z i t 

+ i z x) i
-1

 z
-1

 ] dz = ½ + 


0

Re [ [cos(z log(E)) + i sin(z log(E))] [cos(r z t + z x)  

+ i sin(r z t + z x)] i
-1

 z
-1

 ] dz = ½ + 


0

cos(z log(E)) sin(r z t + z x) + sin(z log(E)) cos(r z t + z x) ] 

z
-1

 ] dz = ½ + 


0

[ sin(z log(E) + r z t + z x) ] z
-1

 ] dz.    (15) 

 

4. Comments and further works 

We expected that the two solutions are identical. Because not getting the same result on the 

two different routes, results that Heston solution has a little inconsistency on some particular cases, 

like ξ = 0 (we use that 0/ξ = 0!). Therefore, a revision of the solution Heston by treating individual 

cases. We intend to do so in the future. 
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