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1. Multi-Heston model for an asset 

 

The model defined by Heston (see [1]) consists from two stochastic differential equations for a 

traded asset. The Heston model corrects some inconsistencies of the Black–Scholes–Merton model 

(see [2]), for example (see [3]): 

a) in reality, volatility is not a static parameter; it can be used as a static value only for short 

periods (this value can be obtained based on the calibration process, usually with a statistical 

estimator); 

b) for longer periods, it is possible that interest rate series does not verify a normal law. 

 

The (Generalized) Heston model is described by the following coupled stochastic differential 

equations: 

 

dS(t) = A(S(t), v(t), t) dt + B(S(t), v(t), t) dB1(t) 

dv(t) = C(S(t), v(t), t) dt + D(S(t), v(t), t) dB2(t) 

dB1(t) dB2(t) = r dt 

 

The (Generalized) Double-Heston model extends the volatility component to 2 semi-volatilities (see 

[4]): 

 

dS(t) = M(S(t), v1(t), v2(t), t) dt + S1(S(t), v1(t), t) dB1(t) + S2(S(t), v2(t), t) dB2(t) 

dv1(t) = C1(S(t), v1(t), t) dt + D1(S(t), v1(t), t) dB3(t) 

dv2(t) = C2(S(t), v2(t), t) dt + D2(S(t), v2(t), t) dB4(t) 

dB1(t) dB3(t) = r1 dt 

dB2(t) dB4(t) = r2 dt 

 

This model can be extended to a multi-volatility model, called The (Generalized) Multi-Heston 

model: 

 

dS(t) = M(S(t), v1(t), v2(t),…, vn(t),  t) dt + S1(S(t), v1(t), t) dB1(t) + S2(S(t), v2(t), t) dB2(t)+…+ 

Sn(S(t), vn(t), t) dBn(t) 

dv1(t) = C1(S(t), v1(t), t) dt + D1(S(t), v1(t), t) dA1(t) 

dv2(t) = C2(S(t), v2(t), t) dt + D2(S(t), v2(t), t) dA2(t) 

… 

dvn(t) = Cn(S(t), vn(t), t) dt + Dn(S(t), v2(t), t) dAn(t) 

dB1(t) dA1(t) = r1 dt 

dB2(t) dA2(t) = r2 dt 
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… 

dBn(t) dAn(t) = rn dt 

 

2. Financial derivative based on a support (see [3]) 

 

Any financial derivative based on a support with the price S(t) at the moment t, with a quotation 

depending on the value of the support and of some volatility parameters at the moment t is V(S, v1, 

v2, …, vn, t), where: 

 

V: R X�[0,T] X�[0,s1max] X��[0,s2max] X … X [0,snmax] → R 

 

and at the maturity moment T it will generate an generate a payoff : 

 

payoff: R+ → R+ 

 

For example, the European options CALL and PUT have the following payoff functions: 

 

payoff (x) = max{0, x - E} 

payoff (x) = max{0, E - x} 

 

where E is the exercise price of the option. 

 

4. Path trace simulation building algorithm 

 

We shall build a trace using the Euler-Maruyama method, after the discretization of the continuous 

time: 

 

t[k] = t[0] + k∆, 0≤k≤N 

 

where: 

a) ∆ is the time frame dimension; 

b) N is the number of time units, such as days or hours; 

c) T is the maturity moment for the derivative. 

 

Like (17) in [3], we have the discretization step: 

 

Algorithm Step(k) 

M := M(S[k], v1[k], v2[k], …, vn[k], t[k]) 

For i:=1 to n do 

  S[i] := Si(S[k], v[i][k], t[k]) 

  C[i] := Ci(S[k], v[i][k], t[k]) 

  D[i] := Di(S[k], v[i][k], t[k]) 

End For 

S[k+1] := S[k]+M* ∆ 

For i:=1 to n do 

  S[k+1] := S[k+1]+S[i]*X[i]*sqrt(∆) 

  V[i][k+1] :=�v[i][k] + C[i]*∆ + D[i]*Y[i] 

End For 

End Algorithm 
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where X[i] and Y[i] are r[i]-correlated normal rand values, generated in a pre-step, such as (18) in 

[3]: 

 

Algorithm Prestep 

For i:=1 to n do 

  X[i] := NormRand() 

  Z := NormRand() 

  Y[i] := r[i]*X[i]+Z*sqrt(1-r*r) 

EndFor 

EndAlgorithm 

 

A complete path simulation can be built after assembling these algorithms into: 

 

Algorithm Simulation 

For i:=1 to N do 

  Prestep 

  Step(i) 

EndFor 

Simulation := payoff(S[n]) 

EndAlgorithm 

 

3. Monte Carlo simulations 

 

We can use Monte Carlo simulation to build a complexity O(1/sqrt(M)) approximation of the 

payoff(E[S[n]]): 

 

Algorithm MonteCarlo 

s := 0 

for i:=1 to M do 

  s := s+Simulation() 

EndFor 

MonteCarlo := payoff(s/n) 

EndAlgorithm 

 

This algorithm can easily be spliced on a PRAM platform like: 

 

Algorithm MonteCarlo 

s := 0 

PARALLEL for i:=1 to M do 

  s := s+Simulation() 

EndFor 

MonteCarlo := payoff(s/n) 

EndAlgorithm 

 

or on a message-based platform like: 

 

Algorithm MonteCarlo 

P := processorcount() 

If processorid()=0 then 

  S := 0 

  for i:=1 to P do 
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    recvfromany(x) 

    S := S + x 

  Endfor 

  MonteCarlo := payoff(s/P) 

Else 

  S := 0 

  M := M/P 

  For i:=1 to M do 

    S := S+Simulation() 

  Endfor 

  Sendto(0, S/M) 

Endif 

EndAlgorithm 

 

4. Further works and acknowledgment 

 

An extension idea is to build a multi-asset model with Multi-Heston for every asset. Another idea 

would be to parallelize the construction of the path with parallelizing of every computing step, 

because the Step and Prestep algorithms are similar for every call. 

 

I want to thank prof. Tiberiu Socaciu from The University of Suceava for helping me with the idea 

of a (Generalized) Multi-Heston model. 
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