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Abstract. It is well known that a Randers metric is a defaiora of a
Riemannian metrier(x,y) =,/a, (X)y'y’ using a 1-formB(x,y)=h(x)y'.
In this paper we are replacing(x,y) , with B,(x,y)=4/b,(x)y'y' . We

obtain a new space and we are going to study sémeproperties.
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1. Introduction.

The theory of the electromagnetism is one of thetrkaown theories of
physics. Starting with Finsler's dissertation in289 its study has been
developed by many geometers and physicists. Theldfigeometry can
indicate the behavior of the particles in an etmoignetic field.

Let M be an n- dimensionaC® manifold. Denote byTM,7,M) the
tangent bundle oM . One consider the variables 1M of position and

=% of direction and a fundamental metric functidh TM - R,
verifying the following axioms:

i) F is a differentiable function ofiM =TM \{O} and F is continuous on

the null section of the projection: TM - M ;
i) F is a positive function;
i)y F is positively 1-homogeneous with respect to théabdes y';
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iv) O(x, y)DTM , the Hessian of?with respect toy' is positive defined.
2 2
So, the d-tensor field g; = 1 0°F - is positive defined. It is called the
26y6y‘
fundamental tensor field of the spag&=(M,F).

The Finsler metri€& induces a vector field

(1.1) G=y 9 i o

ox' ay'
on TM, defined by
(1.2) ——g xy){[F ] (%, y)y —[F ] xy)}
Any vector field in the above form (1.1) with therhogenity property
(1.3) G'(x,Ay) = 4%G' (x,y), 4 >0

is called aspray and G' are called thepray coefficients.

2. Randers spaces.
G. Randers introduced in 1941 a special fundarhefumaction

F(xy)=a(xy)+B(x.y), wherea(xy)=,/a (x)yy" is a Riemannian
metric showing the gravitational field and(x,y)=h(x)y is a 1-form

showing the electromagnetic field. This metric walled a Randers metric.
The fundamental tensog; of the Randers metrid- =a +f is

expressed by

F 11
(2.1) g; :E(a,.j—lilj)+lilj
1
wherel, =99 1 =9F | =4y,
oy

The functionsG'(x,y) = 1 ]k(x y)y'y* are the components of the
geodesic sprap =y % 2G' ai and ij(x y) are the Christoffel symbols
%
of the metric tensorg; . By a direct calculation [12]
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(2.2) G' =(Vi +I'by )Y’y +(@ -1'b")(by, by )ay",
S yi abj s . . )
with |' = = andb;, :F—bsyjsk is the covariant derivative with respect to
X
the Levi-Civita connection of the Riemannian space.
We denote
1 1
i =50 +by). 5 =50 =,

i — Aih — i
)-8 =a'sy,s; =hs;,

g =1, +hs +bs.e,=gYYy s, =5y .5, =5y’ and we can write

1
i i 1 r i ir
(2.3) G =G +E(rkl yey' —2aba®s; y)y +ad'sy,
or, equivalently,
1
(2.4) G =G+ X2y -5y +as,

1

with G' the components of the geodesic spray of the Riaraarspace.
C
The Cartan nonlinear connectionN for the Finsler space

F"=(M,F =a+ f) has the coefficients
[ i
NS

(2.5) v

Definition 2.1.The Finsler space F" =(M,F =a + /) equiped with
C
Cartan nonlinear connection N is called a Randers space and it is denote by

RF”=(M,a+,8,I(\:lj.

C
The nonlinear connectiorN determines the horizontal distribution,

~ C ~
denoted by N too, with the propertyT, TM =N, 0OV, , OQuOTM , V,

being the natural vertical distribution on the tangmanifold TM .The local
adapted basis to the horizontal and vertical vespmces N, and V, is

given by (ﬁ%)l =1,...n , where
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C
50 G0

v
The adapted cobasis i(ij‘,é'yi ) Ji=1..n with

(2.6)

(2.7) oy =dy +Njdx’

The following results holds [11].
C
Theorem 2.1. There exists an unique N -metrical connection
c o
CF(N) = (Fi.,Cl,) of the Randers space RF" which verifies the following
axioms:
C C
i) Oy g9; =0; Oy g; =0;
c c
i) T, =0; S, =0.
[
The connection CI‘(N) has the coefficients expressed by the generalized
Christoffel symbols:

59, gy O

Ci 1 is g 5 g

A2 et e T ae
2 X X X

(2.8)

KT8 oy oyl gy

where -2 aregiven by (2.6).

Cci _ lgis(agﬁ' . 99 _agikj_

The h- and v-deflection tensoBy andd; are given by

(2.8) D=0y =0
and
(2.9) d; =0y =4].
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Since the h-deflection tensdi]} of the metrical canonical connection
vanishes, in this space do not exists the int@lectromagnetic field.

2. A 2" _order Randers space.
Let (M az) and (M ,822) be two Riemannian spaces with

a(xy)=4a (x)yy" and B,(xy)=yb (X)yy . a(x)zb (x). Here,

both quadratic formsr® and 37 are assumed to be different and positive
defined. We define a new type of Finsler metriechion

(3.1) F(xy)=a(xy)+B(xy)

The functionF, (x,y) has an analogy with the metric of the Randersespac
but it is essentially different. The indicatrix &.1) is a R-order surface :

V4 A

(3.2) [(a-b)y'y'] -2(a +)yy' +1=0.
We denote

1 2 1 2
(3.3) =29 =9 and = =4

oy' oy' oy'

The fundamental tenscgiij of F, is

° o o F 11 F 2 2
(3.4) 9; =|i|j+?2(a1]_Iiljj+ﬁi(blj_liljj'
We denote
(3.5) hy =gk,
the angular metric of thé'®order metricF, and we get

o F2 1 F2 2
(3.6) hj z_hj+_hj -

a 2

1 11 2 22
Here, h,=a,-Il; and h;=b,-I;I; are the angular metrics of the

Riemannian space(sM ,az) and(M ,322) :
Let us  consider the Finsler ~ function F,  and
c:t0[0,1] - (xi (t))DU OM , a smooth curve with the properiycOU ,
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U being a domain of a local chart of the manifédid. We can consider the
integral of action of the Lagrangidn(x, y) = F7(x,y) defined by

e

The Euler-Lagrange equations are

2 2 i
(3.8) oa+B) _do(a+F) o ;o
ox' dt oy' dt

or, equivalently,

d2x ¢ dx’ dx* . dx
3.9 +M (X, y)——=0, y =—,
(3:9) dt? k(%) dt dt dt

where Fijk(x, y) are the Christoffel symbols of the fundamentalswrd” :

The Cartan nonlinear connectionlil has the coefficients

Sl (5
sl )

Definition 3.1 The Finsler space
FZ“:(M,Fz(x,y)):(M,a(x,y)+,82(x,y)) equipped with the Cartan

nonlinear connection N iscalled a 2"™-order Randers space.

This space is non C-reducible and the particutees, (x) =h; (x)
corresponds to the Riemannian space.
The nonlinear connectiorN determines the horizontal distribution, denoted
by N too, with the propertyTuTM = l\]uDVu , Ou O™ , V, being the

natural vertical distribution on the tangent makiforM .The local adapted
basis to the horizontal and vertical vector spadés and V, is given by

((;;,ay.),l—l ..Nn , where
(3.10) i_i—l\]k 9
ox  ox oy
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The adapted cobasis i(iji,in ) Ji=1..n with
(3.11) Sy =dy + N} dx’

The following results holds [11]:

Theorem 3.1. Thereexistsan unique N -metrical connection

CI‘(I(I) :(Fjik,c}k) of the Findler space F,' which verifies the following
axioms:

i) DkH 9i =0; DX o =0;

i) T, =0; S, =0

The connection CI"(N) has the coefficients expressed by the generalized
Christoffel symbols:

i is[ 695 , & 5,
I - 1pnis S 4 I« _ jk
ij 2 g ( oxK ox! ox® j

i 1 ~IS El Ik ik
C, =4 s I B S
jk zg (ayk ay! ays ))

(3.12)

where § are given by (3.10).

The h- and v-deflection tensoB andd; are given by

(3.13) D;=0"y andd; =07Y.
By a direct calculation we get:

Theorem 3.2. The interior electromagnetic tensor field of the space
F," depend only of the fundamental function F,(x,y)=a(x,y)+5,(x.y).

Conclusions.Using the results from the book [11 ] we can wiite
laws of conservation of the energy-momentum tenantswe can also study
the gravitational field. We shall do this in a fonaming paper.
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