
BRAND. Broad Research in Accounting, Negotiation, and Distribution 

ISSN 2067-8177, Volume 3, Issue 3, 2012 
 
 
 

 41 

On Stability of the Mechanical Lagrangian Systems 

Valer Nimineţ 
Department of Mathematics and Informatics,Faculty of Sciences, “Vasile 

Alecsandri”University of Bacau, Romania. 
valern@ub.ro 

 
Otilia Lungu 

Department of Mathematics and Informatics,Faculty of Sciences, “Vasile 
Alecsandri”University of Bacau. Romania. 

otilia.lungu@ub.ro 

Abstract. We consider MLS (mechanical Lagrangian systems) with 
external forces. We give some conditions of stability and dissipativity and 
show that the energy of the system decreases on the integral curves.  
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1. Introduction. 
We consider a Lagrangian system 

                                       )),(),,(,( yxFyxLM=∑  

with M a differential manifold, L a regular Lagrangian and ),( yxF  external 
forces seen as d-covector field on TM. 

 The evolution equations of ∑ are: 
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Expanding the derivative with respect to t, replacing the derivates 

ji yy

L
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 with ijg2  and multipling with )( jkg , the equation (1.1) becomes 

system of differential equations of second order: 
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with the notation  
dt

dx
y

i
i =  ,  equations (1.2.) are equivalent with the system of 

equations: 
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         The solutions of this system can be seen as integrable curves of the 
vector field *S  on TM given by: 
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and also is a semispray. 
          The semispray associated to Lagrangian L is 
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S is a vector field on the 
~

TM  which depends only of the MLS. 
 
 

2. Dissipative control of  MLS. 
 

 Definition 2.1. The mechanical system ∑ is dissipative if the force F 

is dissipative i.e. 0),( ≤j
j yyxF  and ∑ is strict dissipative if the force F is 

strict dissipative i.e. j
j

j
j yyyyxF α−≤),( , with 0>α  and i

ijj yyxgy ),(= . 

 The conditions of dissipativity and of strictly dissipativity can be also 
formulated as it follows: 
 If the matrix )),(( yxg ij  is positively defined, it defines a Riemannian metric 

g in the vertical bundle over TM, by formulae 
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(2.1.)                   ji
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for vertical fields 
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 The force field )( iF  can be seen as a section in vertical bundle by 

definition 
i
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The Liouville field 
i
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yC

∂
∂=  appears as a section in vertical bundle and we 

have  
               (2.2.)               2||||:),( yyyyygCCg j
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Also, we have ),(),( CFgyyxF j
j =  and so, the dissipativity condition one 

writes 0),( ≤CFg  and the strictly dissipation condition becomes 
2||||),( yCFg α−≤ ,when the system is dissipative, the energy of the system 

decreases on the integral curves of the equations (1.3.): 
Theorem 2.1.  If the Lagrangian system ∑ is dissipative, then its energy 

L
y

L
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i
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∂
∂=),(  decreases on the solutions curves of the equations (1.3). 

If the system ∑ is strictly dissipative and the solutions curves have not 
singularities, then the energy E is strictly decreasing on solutions curves of 
the equations (1.3). 
 Proof. Let xytytxt &=→ )),(),((:γ  a curve on TM, solution of the 

system γγγ o&
&

F=∇ , where we noted with ∇  Levi-Civita connexion of (M,g) 

manifold. Along this curve, we have: 
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So E is decreasing on γ . 

If ∑ is strictly disipative,then 
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dt

dE
i &&&& α  

  so E is strictly decreasing on γ . 
 
 We define the equilibrum point of the system ∑ as zeros of the semispray 
S*. 
 From (1.4.) it results that the equilibrum point of the system ∑ are       

)0,( 0
ix  or  MTO xx 00

∈  , where )( 0
ix  must be a solution of the equations 

                        )0,(
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* iiiiii xFxGxG −⇔= = 0 

            For a Lagrange manifold (M,L), the tangent manifold TM is a 

Riemannian manifold assuming that 
jiij
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The Riemannian metric on TM is 
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with  
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where  )( i
jN  are the coefficients of the nonlinear connection defined by the 

semispray   
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If the manifold (TM,G) is complete as a metric space one can be given 
theorems of stability for the equilibrum points of a vector field on TM, similar 
to those from nR . 

To give sufficient condition so that the system will be stable, we use a 
Lyapunov function [2] constructed with the energy of the system. 

So, we have: 
Let  )),(),,(,( yxFyxLM=∑   be a dissipative Lagrangian systems with 

),( LgTM   a complete Riemannian manifold. Let )0,( 0
ix  be an equilibrum 

point of ∑  , that is a zero of the vector field  S*. We suppose that  )0,( 0
ix  is a 

point of absolute minimum for the energy E of the system ∑ . Then  )0,( 0
ix   is 

a stable equilibrum point. 
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And also: 
 Let  )),(),,(,( yxFyxLM=∑  be a dissipative Lagrangian system with 

),( LgTM a complete Riemannian manifold, L≥0 and L   a homogenous 

function of degree  2≥m   in the variables y.  Let )0,( 0
ix  be a point on TM with  

0)0,( 0 =ii xF .  Then, )0,( 0
ix   is a stable point of  S*. 

 
Conclusion.  
The energy of the system decreases on the integral curves.    
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