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Abstract 
In this paper we build a PDE like Black-Scholes equation in hypothesis of a financial 

derivative that is dependent on two supports (usual is dependent only on one support), like am 
option based on gold, when national currency has a great float. 
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1. Assuming the model 
We suppose that two supports S, T have a generalized Brownian motion: 
 

dS = A dt + B dW1
t (1) 

dT = C dt + D dW2
t (2) 

 
where W1

t and W2
t are two ρ-correlated Wiener process (named sometime as Brownian motion, 

Wiener-Levy process, Wiener-Bachelier process or Wiener-Einstein process, see [1], p. 123): 
 

dW1
t dW2

t = ρ dt (3) 
 

and where A, B, C, D are some two-variables functions: 
 

A = A(S, T, t)  (4) 
B = B(S, T, t)  (5) 
C = C(S, T, t)  (6) 
D = D(S, T, t)  (7) 

 
Remark: In main cases, A and C, respectively B and D have same formulae. 

 
If we have a financial derivative based on these two supports. We denote with F(S,T,t) the 

evaluation of our derivatives at timestamp t, when current supports level are S and T. If introduce 
payoff function with fructification of derivative at maturity time (tmaturity), than we have a 
condition on boundary: 
 

F(S, T, tmaturity) = payoff(S, T) (8) 
 
Other boundary conditions can be build for zero-value and infinity-value of supports: 
 

F(s, 0, t) = F(0, s, 0) = 0 (9) 
lim S→∞ FS(S, T, t) = lim T→∞ FT(S, T, t) = 1 (10) 
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2. Risk-free portofolio building and Black-Scholes type PDE 
 
Theorem A (extended Itō-like lemma, see [2], for Itō’s lemma see [3]): Let be St and Tt 

two stochastic precesses defined with next stochastic differential equations: 
dS = A(S, T, t) dt + B(S, T, t) dW1

t (11) 
dT = C(S, T, t) dt + D(S, T, t) dW2

t (12) 
where W1

t and W2
t are two ρ-correlated Wiener process: 

 
dW1

t dW2
t = ρ dt (13) 

 
If f(S, T, t) is a differentiable function, then: 

df = [ft + fSA + fTC + ½fSSB2 + ½fTTD2 + fSTρBD] dt + [fSB] dW1 + [fTD] dW2 (14) 
Proof (see [2]). 
 
Lemma B (risk-free portofolio): If we have a risk-free portofolio P(t), than 
 

dP(t) = r P(t) dt (15) 
 
where r is the annualized risk-free interest rate. 

 
Proof. Obviously. 
 
Theorem C (building a risk-free mixt-portofolio with derivatives and supports): 

Assuming model (see supra) the portofolio of: 
1. one unit of derivative with value F(S,T,t); 
2. –FS(S, T, t) units of S stock with total value –S FS(S, T, t); 
3. –FT(S, T, t) units of T stock with total value –T FT(S, T, t), 

Than this portofolio is a risk-free portofolio. 
 

 Proof. Let a risk-free portofolio P of: 
1. one unit of derivative with value F(S,T,t); 
2. a units of S stock with total value a S; 
3. b units of T stock with total value b S. 

 
Value of portofolio is: 
 

P = F + a S + b T (16) 
 
From (16), (14), (1) and (2) we have: 
 

dP =  dF + a dS + b dT = ([ft + fSA + fTC + ½fSSB2 + ½fTTD2 + fSTρBD] dt + [fSB] dW1 + [fTD] 
dW2) + a (A dt + B dW1

t) + b (C dt + D dW2
t) = [ft + fSA + fTC + ½fSSB2 + ½fTTD2 + fSTρBD + aA 

+ bC] dt + [fSB + aB] dW1 + [fTD + bD] dW2 (17) 
 
From (15), (17) and (16) we have: 
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dP = r P dt = r (F + a S + b T) dt (18) 
 
From (17) and (18) we have: 
 

ft + fSA + fTC + ½fSSB2 + ½fTTD2 + fSTρBD + aA + bC = r (F + a S + b T) (19) 
fSB + aB = 0 (20) 
fTD + bD = 0 (21) 

 
From (20) and (21) obtain that 
 

a = – fS   (22) 
b = – fT  (23) 

 
q.e.d. 
 

Corrolary D (Black-Scholes-like PDE) Assuming model (see supra), the value of 
derivative verify next PDE: 
 

ft + ½fSSB2 + ½fTTD2 + fSTρBD – rF + fSS + fTT = 0 (24) 
 
Proof. From (19), (22) and (23) we have: 
 

0 = ft + fSA + fTC + ½fSSB2 + ½fTTD2 + fSTρBD + aA + bC – r (F + a S + b T) = ft + fSA + fTC + 
½fSSB2 + ½fTTD2 + fSTρBD – fSA – fTC – r (F – fSS – fTT) = ft + ½fSSB2 + ½fTTD2 + fSTρBD – rF + 

fSS + fTT (25) 
 
q.e.d 
 

Remarks E: If S = T, A = C, B = D and ρ = 0 we obtain from (25) generalized Black-
Scholes equation: 
 

Ft + ½B2FSS + rSFS – rF = 0. (26) 
 
If A = μS and B = σS we obtain from (26) Black-Scholes equation (see [4]): 
 

Ft + ½ σ2S 2FSS + rSFS – rF = 0. (27) 
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