Financial derivatives (based on two supports) evaluation

Tiberiu Socaciu Faculty of Economics, Stefan cel Mare University of Suceava, Romania Faculty of Informatics, Vasile Goldis Western University of Arad, Romania Faculty of Economics, Babes-Bolyai University of Cluj, Romania socaciu@seap.usv.ro

Abstract

In this paper we build a PDE like Black-Scholes equation in hypothesis of a financial derivative that is dependent on two supports (usual is dependent only on one support), like am option based on gold, when national currency has a great float.

Keywords: Financial derivatives, derivatives evaluation, derivatives based on two supports, extended Itō like lemma.

1. Assuming the model

We suppose that two supports S, T have a generalized Brownian motion:

$$dS = A dt + B dW_{t}^{1} (1)$$

$$dT = C dt + D dW_{t}^{2} (2)$$

where W_t^1 and W_t^2 are two p-correlated Wiener process (named sometime as Brownian motion, Wiener-Levy process, Wiener-Bachelier process or Wiener-Einstein process, see [1], p. 123):

$$dW_t^1 dW_t^2 = \rho dt \qquad (3)$$

and where A, B, C, D are some two-variables functions:

$$A = A(S, T, t) (4) B = B(S, T, t) (5) C = C(S, T, t) (6) D = D(S, T, t) (7)$$

Remark: In main cases, A and C, respectively B and D have same formulae.

If we have a financial derivative based on these two supports. We denote with F(S,T,t) the evaluation of our derivatives at timestamp t, when current supports level are S and T. If introduce payoff function with fructification of derivative at maturity time ($t_{maturity}$), than we have a condition on boundary:

$$F(S, T, t_{maturity}) = payoff(S, T) (8)$$

Other boundary conditions can be build for zero-value and infinity-value of supports:

$$F(s, 0, t) = F(0, s, 0) = 0$$
(9)
$$\lim_{S \to \infty} F_{S}(S, T, t) = \lim_{T \to \infty} F_{T}(S, T, t) = 1$$
(10)

2. Risk-free portofolio building and Black-Scholes type PDE

Theorem A (extended Itō-like lemma, see [2], for Itō's lemma see [3]): Let be S_t and T_t two stochastic precesses defined with next stochastic differential equations:

 $dS = A(S, T, t) dt + B(S, T, t) dW^{1}_{t}$ (11) $dT = C(S, T, t) dt + D(S, T, t) dW^{2}_{t}$ (12)

where W_t^1 and W_t^2 are two p-correlated Wiener process:

$$dW_t^1 dW_t^2 = \rho dt \qquad (13)$$

If f(S, T, t) is a differentiable function, then:

 $df = [f_t + f_s A + f_T C + \frac{1}{2} f_{SS} B^2 + \frac{1}{2} f_{TT} D^2 + f_{ST} \rho BD] dt + [f_s B] dW_1 + [f_T D] dW_2$ (14) **Proof** (see [2]).

Lemma B (risk-free portofolio): If we have a risk-free portofolio P(t), than

$$dP(t) = r P(t) dt$$
(15)

where r is the annualized risk-free interest rate.

Proof. Obviously.

Theorem C (*building a risk-free mixt-portofolio with derivatives and supports*): Assuming model (see supra) the portofolio of:

- 1. one unit of derivative with value F(S,T,t);
- 2. $-F_S(S, T, t)$ units of S stock with total value $-S F_S(S, T, t)$;
- 3. $-F_T(S, T, t)$ units of T stock with total value $-T F_T(S, T, t)$,

Than this portofolio is a risk-free portofolio.

Proof. Let a risk-free portofolio P of:

- 1. one unit of derivative with value F(S,T,t);
- 2. a units of S stock with total value a S;
- 3. b units of T stock with total value b S.

Value of portofolio is:

$$\mathbf{P} = \mathbf{F} + \mathbf{a} \mathbf{S} + \mathbf{b} \mathbf{T} \qquad (16)$$

From (16), (14), (1) and (2) we have:

 $dP = dF + a dS + b dT = ([f_t + f_SA + f_TC + \frac{1}{2}f_{SS}B^2 + \frac{1}{2}f_{TT}D^2 + f_{ST}\rho BD] dt + [f_SB] dW_1 + [f_TD] dW_2) + a (A dt + B dW_t) + b (C dt + D dW_t) = [f_t + f_SA + f_TC + \frac{1}{2}f_{SS}B^2 + \frac{1}{2}f_{TT}D^2 + f_{ST}\rho BD + aA + bC] dt + [f_SB + aB] dW_1 + [f_TD + bD] dW_2$ (17)

From (15), (17) and (16) we have:

$$dP = r P dt = r (F + a S + b T) dt$$
 (18)

From (17) and (18) we have:

$$f_{t} + f_{S}A + f_{T}C + \frac{1}{2}f_{SS}B^{2} + \frac{1}{2}f_{TT}D^{2} + f_{ST}\rho BD + aA + bC = r (F + a S + b T)$$
(19)
$$f_{S}B + aB = 0$$
(20)
$$f_{T}D + bD = 0$$
(21)

From (20) and (21) obtain that

$$a = -f_S$$
 (22)
 $b = -f_T$ (23)

q.e.d.

Corrolary D (*Black-Scholes-like PDE*) Assuming model (see supra), the value of derivative verify next PDE:

$$f_t + \frac{1}{2}f_{SS}B^2 + \frac{1}{2}f_{TT}D^2 + f_{ST}\rho BD - rF + f_SS + f_TT = 0$$
 (24)

Proof. From (19), (22) and (23) we have:

$$0 = f_t + f_S A + f_T C + \frac{1}{2} f_{SS} B^2 + \frac{1}{2} f_{TT} D^2 + f_{ST} \rho BD + aA + bC - r (F + a S + b T) = f_t + f_S A + f_T C + \frac{1}{2} f_{SS} B^2 + \frac{1}{2} f_{TT} D^2 + f_{ST} \rho BD - f_S A - f_T C - r (F - f_S S - f_T T) = f_t + \frac{1}{2} f_{SS} B^2 + \frac{1}{2} f_{TT} D^2 + f_{ST} \rho BD - rF + \frac{1}{5} S + f_T T$$
(25)

q.e.d

Remarks E: If S = T, A = C, B = D and $\rho = 0$ we obtain from (25) generalized Black-Scholes equation:

$$F_t + \frac{1}{2}B^2F_{SS} + rSF_S - rF = 0.$$
 (26)

If $A = \mu S$ and $B = \sigma S$ we obtain from (26) Black-Scholes equation (see [4]):

$$F_t + \frac{1}{2} \sigma^2 S^2 F_{SS} + r S F_S - r F = 0.$$
 (27)

References

- 1. Pavel Fărcaș, Radu Moleriu, *Elemente de probabilități și teoria proceselor stochastice cu aplicații în matematica financiară*, Editura Albastra, Cluj-Napoca, 2006, 315 pages.
- 2. Tiberiu Socaciu, *Obtaining Generalized Garman Equation*, in Dinu Airinei, Carmen Pintilescu, Livia Baciu, Olesia Lupu, Andreea Iacobuta, Mircea Asandului (editors), *Globalization and Higher Education in Economics and Business Administration*, Editura Tehnopress, Iasi, 2009, ISBN 9789737027122, pp. 53-58.
- 3. Kiyoshi Itō, On stochastic differential equations, in. Memoirs, American Mathematical Society, 1951, 4, pp. 1–51.

4. Fischer Black, Myron Scholes, *The Pricing of Options and Corporate Liabilities*, in *Journal of Political Economy*, 1973, 81 (3), pp. 637–654.