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Abstract 
In this paper we present an algorithm for rule based systems that uses Bidirectional 

Associative Memories (BAMs) to memorize the inputs and their corresponding outputs, and outputs 
and their corresponding inputs of the system. Adaptive rule based system are becoming very 
important because rule based systems are now used in many applications. One drawback of current 
adaptive rule based systems is that these systems care only about forward chaining mechanism 
which diminish their performance. Because most of the applications that use rule based systems 
follow the forward chaining, adaption attempts which is concerned with predicting the inputs given 
the output is almost null, but this does not eliminate the importance of backward chaining since it is 
used in too many applications. To tackle this problem we propose a new algorithm that utilizes the 
good theoretical ground of BAMs to memorize and adapt rules in rule based systems. The main 
difference between the proposed algorithm and other algorithms is that the proposed algorithm is 
simple to code the rules and adapt them. In addition, because BAMs supports bi-directions, the 
proposed algorithm is the only algorithm with adaptation that is able to expect what conditions 
should be true if we provide the system with outputs. The proposed algorithm considers "and" and 
"or" rules in the used rules, whereas in all the previous systems, only "and" relation is considered.  
The proposed solution will be useful in adapting any rule based system whether it uses forward 
chaining or backward chaining, which is considered to be a significant contribution. The proposed 
algorithm has six parts; cod table creation, input and output vectors construction, weight matrix 
calculation, procedure to test the system, procedure to run the proposed algorithm and finally rule 
extraction or what we call rule code decoding. To illustrate parts of the proposed algorithm, a 
simple example is provided. 

 
Keywords: Rule Based Systems; Adaptive Systems; Bidirectional Associative Memories.  

1. Introduction 
In this section, we shall give an overview on two main issues related to the basics of the 

work of this paper, rule based systems and adaptation; and BAMs. 
 

1.1. Rule Based Systems and Adaptation 
Rule based systems are systems that work based on given rules related to the problem 

domain. Most of these systems use standard rule structure, where each rule is having conditions and 
actions. The conditions might be connected with "and" or "or" relation. To obtain the action, the 
condition has to be true. The standard rule structure is having the form: 

IF Conditions/ Antecedents THEN Actions/Consequences 

Usually rule based system uses an inference mechanism to obtain the final conclusion, this 
inference could be forward chaining, backward chaining or both together. In forward chaining 
inputs for the conditions are given to get the outputs, on the other hand, during the backward 
chaining, the expected output is given to the system and the then system goes backward to prove it 
if possible. The concepts of forward chaining and backward chaining are very important in creating 
adaptive rule based systems. Many trails have been made to develop adaptive rule based systems, 
and most of these trails depend on firstly representing the rules in a certain approach then train the 
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system to be able to induce new rules (Blount et al., 2011; Cimino et al., 2012; Farid et al., 2016; 
Hewahi, 2004; Hewahi, 2005; Hewahi, 2011). In addition, these approaches consider only forward 
chaining mechanism, and are usually complex because they need a sophisticated rule representation 
stage before learning. Additionally, in the previous attempts, only "and" relation between the 
conditions is considered. The advantages of these approaches are that new rules might be extracted. 

Because many rule based systems depend on backward chaining or both forward and 
backward chaining, it would be necessary to have adaptive systems that consider such kind of 
chaining. These adaptive systems should consider simple representation of rules and deal with 
"and" and "or" relations within the condition part of the rule.  

In our proposed approach, rule representation and the learning process are very simple 
processes. In addition, rules can be extracted. And above all, this approach can work in forward 
chaining as well as in backward chaining considering also rules with "and" and "or" condition 
relations. The proposed approach depends on BAMs that have been used as a theoretical ground to 
memorize and adapt the rules, and to facilitate working with forward and backward chaining in the 
adaptive rule based system.  

In this introduction, we present two subsections related to the core work of this paper. The 
first part is to give an overview on rule based systems and rule structure. The second part is to go 
through BAMs. 
 

1.2. BAMs 
BAMs are neural networks proposed by Kosko (1987) and works in bidirectional. BAMs is 

an extension of Hopfield networks which works in one direction (1982). One direction means the 
neural network can memorize its inputs. In Hopfield networks, the networks memorize the given 
inputs. Bidirectional means the neural networks can memorize outputs related to given certain 
inputs, and can also memorize inputs related to given outputs. BAMs are two layer neural networks 
whereas the Hopfield network is a one layer neural network. The advantages of BAMs over 
Hopfield networks is that when input is given, we can get the corresponding output, and when the 
output is given, we can know the corresponding input. In BAMs, we need first to calculate the 
weight matrix W which is defined in formula (1) 

         n 
W =  Ʃ (Xi. Y

t
i)                (1) 

         i=1 
 

Where n is the number of examples,  X௜ is the ith example and Yt
i  is the transposed output 

corresponding to  X୧. The inputs values for X୧   is 1 for true input and -1  for false input. Similarly 
for output values.  

To test the network, we can give any input from the given input examples, or new input not 
seen before. In case, the input is from the given examples, the system should produce the 
corresponding output, and in case the input is not given before, the system is expected to get one of 
the given outputs; however, if obtained output is not among the previously given outputs, we can 
still get the most reasonable expected output. Similarly, if the output is given as in the memorizing 
examples, the system will be able to obtain the necessary inputs. If the given output is not one of the 
memorizing examples, the system will be able to give us the closest required input. Formula (2) is 
used to compute the output vector 

F(Wt Xi)                           (2) 

Assuming Z = Wt Xi, F will give value 1 if Z>0 and will give value -1 if Z< 0. If Z = 0, F will get 
value of the last output 1 or -1.   

Assume we have two inputs X1 and X2  and two outputs Y1 and Y2 (where Y1 is the output 
for X1 and Y2 is the output for X2) as below: 
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X1 = [  1   1]      Y1= [1   -1   -1] 

X2 = [-1    1]       Y2= [1   1    -1]  

W = X1.Y1
t + X2.Y2

t 

                   0     -2     0 

W = 

                  2      0     -2 

Let us now assume that we want to test the network with X1 as input.                                               

                   0    2                  1       

        F       -2    0          .        1 

0  -2 
 

=  [ 1     -1      -1]T 

If we now want to see the association between the output and input, assume 

[1   -1   -1]T  as input 

= F(WXi)                                                

                                                      1 

                  0     -2      0                - 1 

= F             2      0     -2         .      - 1   

  

 

= F   [2   4]T  

 
= [  1    1]T   
 
Now let us assume we want to know the expected output for the input [1   -1], following the same 
procedure, the expected output will be 
 
[-1     -1      1]T 
 
And if want to see the association from output to input and start from the output 
[-1     -1      1]T, we get [1    -1] as inputs. 

 
2. Literature Review 
Many attempts to develop adaptive rule based systems have been done. Most of these 

attempts are firstly focus on representing the existing rule set in a certain structure that can be used 
for learning process. Holland (1985) developed a system called a classifier system that learns 
classifiers (classifiers are rules coded into bit patterns). The system uses an algorithm called bucket 
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brigade algorithm to make conflict resolution between classifiers and to assign credit to each 
classifier. New classifiers are generated based on genetic algorithms. The main disadvantage of this 
process is the long action chain caused by the bucket brigade algorithm. Moreover, this approach 
has nothing to do with backward chaining and only "and" relation is considered between the 
conditions. In (Towell & Shavlik, 1991; Towell & Shavlik, 1994), a proposal called Knowledge 
Based Neural Network (KBNN) has been presented. The idea is to represent the rules first in a 
neural network and consider important inputs with high weights and unseen inputs with very low 
weights. After training, some of the weak weights might become strong and new rules can be 
constructed. Again, in this process backward chaining is not considered and only "and" relation is 
used between the conditions. Bahradwaj and Silva (1998) proposed an approach to develop an 
adaptive system for hierarchical censored production rules (a special type of a rule structure that 
handles real time cases) has been proposed. This approach is called variable precision neural logic. 
The used approach is a sort of integration between hierarchical censored production rules and neural 
networks. Actually this approach also takes a quite some time to represent the rules first. In addition 
it does not deal with backward chaining despite the used rule structure facilitates to go backward. 
Also "or" relation between the conditions is omitted. Hewahi (2004) introduced a new method 
called  General Rule Structure Neural Logic (GRSNL) Network. This approach was developed to 
have an adaptive system for rules called General Rule Structure (GRS) rule (Hewahi, 2002). This 
approach also needs to represent the rules first into a neural network, and then training is performed 
to extract new rules. Again this approach cares only about forward chaining and considers only 
"and" relation between the conditions.  In (Hewahi, 2011) an approach based on probabilistic neural 
networks has been presented. In this method rules are first implemented in a probabilistic neural 
network and then the neural network can answer queries. This approach also needs full 
representation and implementation of all the given rules into the probabilistic neural networks. This 
approach is only useful for forward chaining. Wang (2017) claims that there is no algorithm to 
adapt business rules that are used in industry when known information is in the form of statistical 
nature. He proposed an algorithm based on mathematical programming. The scope of the proposed 
algorithm was based on two concepts which are called bounded case and linear iteration bounded. 
This approach is still limited to business and the information of statistical nature and the main 
concern is only the adaption. Tabebordbar  and Beheshti (2018) proposed an adaptive monitoring 
system to monitor the precision of the rules. Their approach can recognize rules that cause the 
system to perform bad, the proposed approach could catch the improper rules. Actually, this work 
has nothing to do directly with the work in this paper, but still it shows the importance of rule based 
systems and their adaptation.  

Many adaptive rule based systems have been developed for certain areas such as Alzheimer 
classification (Jain et al, 2013), facial expression recognition (Ioannou et al, 2004), managing 
situation-awareness (Cimino et al, 2012) ,  classifier for mining big biological data (Farid et al, 
2016), classifying activities of daily living (Okour et al, 2015), malware detection (Blount et al, 
2011), and smart home energy prediction (Jithish  & Sankaran, 2017) In all the previous works, the 
used approach is only designed to fit with the used application domain, which means any approach 
used in one work is not directly useful to other domains. 

To sum up, all the previous works for developing adaptive rule based systems need to 
represent rules first and then start training. In addition, backward chaining is not considered. In case 
of designing adaptive rules based systems for specific domains, these approaches do not work with 
other domains and would be difficult to work as a general approach.  

In our paper we present an approach that does not need to represent the rules in a complex 
structure and avoid the drawbacks of the previous methods. We depend on the theory of BAMs 
which deals with input and output. The process which we follow can memorize the inputs and their 
corresponding outputs, and outputs and their corresponding inputs. In backward chaining we check 
whether the goal can be achieved starting from the goal, but in our approach, going backward 
means known what are the necessary conditions need to be true to achieve the goal. The proposed 
approach can be used in various application domains. The advantage of using BAMs for adaptive 
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rule based systems is that the most of rule based systems have a limited number of rules that can be 
coded and represented easily.  

 
3. The Proposed Approach   
As stated above our proposed approach depends on BAMs Theory. We assume rules have 

only one condition, "and" relation conditions or "or" relation conditions, but "and" and "or" 
relations are not considered in one rule. In most of the previous approaches, only one condition or 
"and" relation conditions are only considered, but "or" relation is not considered.  Also our 
assumptions include that any rule has only one conclusion, positive or negative, which is also the 
same in all the previous algorithms. The proposed approach has five parts, creation of coding table, 
input and output vectors construction, obtaining the weight matrix, testing the system, running the 
system and rule extraction (rule decoding). 

 
3.1. Coding Table 
In this stage, rules are coded in a specific table called coding table. Coding table contains the 

rules condition inputs, the rules outputs and whether the relation in the rule condition is "and" 
relation or "or" relation. Each row in the table represents a rule and is called rule code. Each rule 
input slot is filled with 1 if true and -1 if false, and each rule output slot corresponding to the rule is 
filled with 1 if positive (true) and -1 if negative (false). Under the relation column, if the rule is 
having "and" relation, its relation slot is filled with 0, if the rule is having "or" relation, its relation 
slot is filled with 1. If the rule has only one condition, the slot becomes empty. The used table is 
shown in Table 1.  

 
Table 1. The proposed rules coding table for three rules. The total number of inputs in all rules is 8 

and total number of outputs in all rules  is 3 
 
 
 
   
 
 

3.2. Input and Output vectors Construction 
Inputs:  
The coding table for the system rules.  
 
Output: 
The input and output vectors for the system rules. 
Updated coding table. 
Highlights: 
To make our concept clear in this part, assume we have the following rule 
IF   A  THEN  Z 
and assume further that the number of conditions/inputs in the system rules are 5 (for 

example A,B,C,D and E). The above rule means, A should be true to conclude Z regardless of the 
values (true/false) of the other system inputs B,C,D and E. This simply means for example 

IF A and not B THEN Z is still a true rule , and IF A and B and not C THEN Z is still a true 
rule unless a contradictory rule appears in the future. 

  
The process: 

a. Find number of the generated copies for each rule code (NC) based on the following 
formula 

NC  = n * δ,                         (3) 

 Inputs Relation Outputs 
# A B C D E F G H  X Y Z 
1             
2             
3             
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Where n is the number of inputs ( for example 8 in Table 1) and δ is the copying factor. δ is 
a value that satisfies the condition 1≤ δ ≤ 2n-z,  where z is the number or remaining conditions other 
than those which have 1 or -1 in rule code. The larger is the value of δ, the more is the number of 
copies are generated. The minimum number of copies will be equal to n in case δ = 1.  

b. Every input vector Xi is represented in the form [i1  i2  i3, ..in], where i1 for example is the 
value assigned for the first input. Each copy of the rule code is identified by Xij to indicate 
that it is the jth copy of the ith rule code. 

c. For every rule code (row in the table)  in the coding table do the following: 
d. If the rule is having one condition c, NC number of copies will be randomly generated to 

have values 1 or -1 and indicated by 1' or -1' respectively for inputs other than c. The c value 
for all the copies will be always 1 for positive input condition and -1 for negative input 
condition. We use 1' and -1' to distinguish between these generated values and the original 
value of the condition c. This is important in the stage of  rule extraction (rule code 
decoding). We do not use 0 as a don't care for other conditions other than c because 0 in 
Hopfield and BAMs indicates that 0 values means that the input/output will keep its 
previous value 1 or -1. So if we keep 0 in our computation as a don't care, we will not get 
correct results. 

e. If the rule is having "and" relation between say i and j conditions, NC number of copies will 
be randomly generated to have values 1' or -1' for inputs other than i and j.  The values for i 
and j will be always 1 or -1 for all the copies depending on their input value positive or 
negative. 

f. If the rule is having "or" relation between say i and j conditions, two sets of copies will be 
generated, the first set will have the condition i value as 1 or -1 and the remaining conditions 
values will have either 1' or -1' values generated randomly. The second set will have the 
condition j value as 1 or -1 and the remaining conditions values will have either 1' or -1' 
values generated randomly. In this case we shall get 2*NC copies. 

g. Output vector Yi = [o1 o2 o3..om] is the output vector for the ith rule code, where m is the 
number of outputs in the system. All the copies of the ith rule code will have Yi as output. 
This means the NC for a certain rule code will have the same output. Our assumption is that 
the output vector values are having exclusive or relation, which means only one of them can 
be true and the rest should be false, or one of them is false and the rest is  true. The output 
vector will have 1 or -1 for the output to be achieved (1 for non-negated output and -1 for 
negated output). If we have a non-negated output, all the other output values should be -1', 
and if we have a negated output, all the other output values should be 1'.  
It is to be noted that all the input copies are added to the code table. 

 
3.3. Obtaining Weight Matrix  
Input:  
Code table -The input vectors extracted from the code table. 

 
Output: 
The weight matrix W 
The process: 
The proposed approach produces the weight matrix  (W) that can be used to test and find the 

output of any given input. We follow the same approach used in BAMs in computing W.  In the 
computation of W, every 1' is considered as 1 and every -1' is considered as -1. The following is the 
steps required to obtain the weight matrix. 

a. For every rule code, we compute Rule Weight (RWi)  
    RWi =  ∑ (𝑋𝑖𝑗)𝑇. (𝑌𝑖)௡

௝ୀଵ                        (4) 
b. Compute W = ∑ 𝑅𝑊𝑖௥

௜ୀଵ                 (5) 
Where r is the number of rule codes in the table. 
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3.4. Testing the System   
Inputs:  
The weight matrix W. 
Code table. 
The input (can be input or output) required to get its output/input. 
 
Output:  
The output of the given input, or the input for the given output. 
The process: 
The steps below are the steps to be followed to get output/input. This process includes 

testing and adapting the system: 
 

a. Get the input and apply it to obtain the corresponding output using formula 2. In normal 
cases, if the given input vector is among the input vectors used to obtain the weight matrix, 
the exact expected output will be produced; this is normally obtained by following the 
BAMs approach. It is normal if the given input is not one of the inputs used to get W, the 
obtained output mostly will not be also included in the output list of the system. 

b. If the obtained output is one of the outputs, then accept it, if it is not; try to find the closest 
output by computing the hamming distance. The hamming distance is the number of 
differences between the corresponding values in two vectors (this mechanism is used in 
Hopfield approach). 

c. If the hamming distance d is less than or equal to threshold t, then consider the output with 
the most less hamming distance  as the output for the given input. Otherwise, the output is 
considered to be the output of the given input known by the user. t can be computed as  
t = m * c             (6) 
where m is the number of values in the output vector and c is acceptance coefficient which 

is  0 ≤ c ≤ 1. When the user wants to be stricter, he/she can make the value of c less, and when 
he/she wants to be more flexible, he/she can increase the value of c. when c= 0, no tolerance is 
accepted and the same output should be considered. The worst case is when c=1, which means all 
output values in the output vector can be incorrect. 

d. Since this is a testing stage, the output should be known by the user, the expected output is 
compared by the obtained output, if they are the same, the testing is over. 

e. If the obtained output is not as the expected output, the input and the expected output are 
added to the code table and W is recomputed.  This re-computation needs first determining 
only the inputs and output vectors as explained above for the recently added input and its 
corresponding output.   
The above steps are applied if you start from input to output or if you start from output to 

input.  
 

3.5. Running the System 
Input: 
The weight matrix W. 
Code table 
The input (can be input or output) required to get its output/input. 
Output: 
The input/output for the given input (can be input or output for the system) by the user 
The process: 
In this stage, steps from a to c in testing the system stage are typically performed. Then, if 

the obtained output is not among the output vectors listed in the code table, the given input and the 
corresponding obtained output are inserted into the code table, and W is recomputed.  
 



N. M. Hewahi - Bidirectional Associative Memories for Adaptive Rule Based Systems  

81 

 
3.6. Rule Extraction (Rule Code Decoding) 
In this stage, we follow certain points to extract the rules, or what we call rule code 

decoding: 
Input: 
Rule code table 
Output: 
Extracted rules 
The process: 

a. For every code rule, we construct a rule with inputs as the conditions of the rule and the 
output as the action of the rule.  

b. To construct the conditions, for every true input, use its name in the rule, if the input is false 
(-1 value); use its negated name in the rule. In this stage, we ignore 1' and -1' from our 
consideration.  

c. For every rule code, if one or more input values have 1 or -1, the relation is checked in the 
table, if it is 0, "and" relation between the inputs is constructed, otherwise "or" relation 
between the input conditions is constructed. 

d. To construct the action, for every true output (1), use its name in the action part of the rule. 
Similarly for negated output (-1), use its negated name in the action part of the rule. Again 
here 1' and -1' are ignored.  

e. The rule should only be extracted once. Similar rules will be ignored. 
 

4. Example 
Let us assume we have the following rules 
IF   A THEN B 
IF   C  THEN G 
IF G and M THEN R 
IF R or N THEN Z 
IF X and ~S THEN E 
The constructed table is the one shown in Table 2. 

 
Table 2. The constructed table for the given set of rules. 0 relation means "and" relation, and 1 

relation means "or" relation 
 
 
 
 

Based on Table 2. W can be computed as below. 
 

The input vector is to represent values for  [ A  C  G  M  R  N  X  S] and the output vector 
represents [B  G  R  Z  E] in the same order. 

For rule1 the value of A should be true (value 1) to  conclude B.   Based on this the output 
should be   Y1 = [1   -1'   -1'   -1'     -1']T. Where -1' is a value assigned by the algorithm to have 
exclusive or relation.  This means B is true and all other outputs should be false. For the input, A 
should be true regardless of other input values.  

Let us assume δ (copies factor) = 1.5, then NC = 8 x 1.5 = 12 copies, we generate all input 
values other than input A at random 1 or -1 and use 1' and -1' to represent them respectively, for 
example: 

 

 Inputs Relation Outputs 
# A C G M R N X S  B G R Z E 
1 1         1     

2  1         1    
3   1 1     0 (and)   1   
4     1 1   1 (or)    1  
5       1 -1 0 (and)     1 
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X11 = [1  -1'   1'  -1'  -1'    1'    1'   -1']T 
X12= [1  -1'  -1'   1'   1'   -1'   -1'    1']T    
X13 = [1   1'   1'   -1'  -1'   1'    1'   -1']T   and so on until we get 12 copies 

All these input vectors have output Y1 
For the second rule C must be true to conclude G. This will give 

 
X21 = [ -1'   1   1'     -1'   -1'   1'     -1'    1']T  
X22 = [1'     1   -1'    -1'    1'   -1'     1'    1' ]T 
X23 = [1'     1    -1'    1 '   1'   -1'     1'    -1'] T 
 
and so on until we get 12 copies and all of them have output 
Y2 = [-1'    1   -1'    -1'    -1']T 
 

Similarly for rule 3, to conclude R, G and M should be true. It has to be noted that the 
relation between G and M is "and" relation. This will give  
 
X31 = [-1'   -1'    1     1    -1'    -1'      1'    -1']T 
X32 = [-1'     1'     1     1    1'     -1'     -1'    1']T 
X33 = [1'     -1'    1     1    -1'     1'     -1'    -1']T    
and so on until we get 12 copies and all of them have output 
Y3 = [-1'   -1'    1    -1'     -1']T  
 

For Rule 4, to conclude Z, R or N should be true. Because we have or relation, we create 24 
copies, half of them ensures that R is true and the rest ensures that N is true.  
 
X41 = [-1'   -1'    1'    -1'    1   1  -1'  -1']T 

X42 = [-1'    -1'   -1'    -1'   1   1  1'  -1']T 

X43 = [-1'    -1'   -1'    -1'   1   1  -1'  -1']T 
… 
X413= [ -1 '  -1'   -1'     1 '   1   1   -1'  -1' ]T 

 
The output for all X4 inputs is  Y4 =[-1'    -1'   -1'   1   -1']T 

 
For rule 5, the same process is done as that of rule 3, the only difference is that the values 

for X and  S are always 1  and -1 consecutively. Below is an example related to X51.  
 
X51 = [ -1'  -1'  -1'  -1'  -1'  -1'  1  -1] 
 

The output for all the copies for rule 5 (rule code 5)  is  
Y5 = [-1'    -1'   -1'   -1'  1]T  
 

Now based on the above, we include all the generated copies in the code table and compute 
the weight matrix W as below:  
RW1= (X11)

T.Y1 + (X12)
T.Y1+ (X13)

T.Y1 +……(X112)
T.Y1 

RW2= (X21)
T.Y1 + (X22)

T.Y1+ (X23)
T.Y1 +……(X212)

T.Y2 

 

Similarly RW3, RW4 and RW5 are computed. Now it is time to compute W 
W = RW1 + RW2+RW3 +RW4+RW5 
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5. Conclusion 
In this paper a new algorithm to represent and adapt rules in rule based systems based on 

BAMs is proposed. The strength of BAMS is that it has a strong theoretical ground that can be used 
with full trust. The proposed algorithm utilizes BAMs to memorize and adapt rules in rule based 
systems and facilitates the deal with forward chaining and backward chaining as well. The proposed 
algorithm has advantages over other algorithms in terms of rule representation, inference 
mechanism and logic relations within a  rule. The simplicity of rule representation through the code 
table made the rule extraction a simple process. Implementation of this algorithm is simple and rule 
adaptation process is still based on the theory of  BAMs. Most of the previous algorithms deal with 
only one condition or with "and" relations between the conditions in the rule. In our algorithm, we 
also consider "or" relation between the conditions. The proposed algorithm discusses six issues, 
code table creation, input and output vectors construction, weight matrix calculation, testing the 
system, running the system and extracting the system rules. In code table creation, we construct a 
table where each rule is coded in terms of 1 and -1. In input and output vector, we generate copies 
of the rule codes and insert them in the code table, 1' and -1' are used to fill wildcard 
condition/outputs. '1 and -1' are used to be identified from the original 1's and -1's. In the weight 
matrix calculation, we follow the concepts used in BAMs. In the system testing stage, we follow a 
process to test the system learning performance and do necessary changes if needed. In the system 
running stage, the same process is done as testing stage, but the system tries to improve itself 
without the help of the user. In the rule extraction (rule code decoding) stage, we present how rules 
are extracted from the code table. Some of the future directions could be implementing the proposed 
algorithm with various rule based systems applied in various domains.   
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