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Abstract 
 This paper investigates solution concepts for coalitional games. Several solution concepts 
are characterized, such as the core, Shapley value, bargaining set, stable set, nucleolus, and kernel. 
We look at recent developments of succinct representations of coalitional games, such as weighted 
voting games, coalitional resource games, cooperative Boolean games, and marginal contribution 
nets. Existing solution concepts have prohibitive complexity requirements even for very simple 
classes of games. We discuss an agenda for finding an equilibrium solution concept that is as 
appealing as the core, but that is tractable and guaranteed to exist. 
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1. Introduction 
  Coalitional (or cooperative) games study how groups of self interested players interact to 
accomplish more together than they could achieve individually. These interactions are modeled 
using a set of players, a set of actions, and a preference profile over the joint outcomes. While the 
players have to cooperate to achieve the outcomes that they want, their reasoning is always self-
interested and they seek the actions most likely to bring the highest possible payoff (utility) for 
themselves. Solution concepts describe, in each game, the set of outcomes believed to arise based 
on the type of reasoning employed by the players. Coalitional solution concepts are often universal, 
i.e. applicable to all types of coalitional games, and attempt to ensure some form of stability. No 
matter how good an outcome is for the society at large, it may not be enforced if several players can 
become rich by deviating. In general, there exists a tension between outcomes that are beneficial for 
social welfare and outcomes that are stable. In this paper we are mainly concerned with stability. 
 The rest of the paper is structured as follows. Section 2 mentions the terms and notations 
useful when discussing solution concepts. Sections 3 through 11 introduce several solution concepts 
for coalitional games. Section 12 is a survey of recent classes of games and their complexity results 
with respect to solution concepts. Section 13 contains an agenda for finding an equilibrium concept 
for coalitional games that is tractable and guaranteed to exist. 
 

2. Preliminaries 
  Coalitional game theory focuses on what groups of players can achieve. Because of the 
cooperation required for the players to achieve their goals, there is a need to predict the outcomes 
of these games with solution concepts that explicitely take the cooperation into account. We first 
consider the class of transferable utility coalitional games, in which the payoff of a coalition is 
given and the agents negotiate with each other to divide the payoff. 
  A coalitional game with transferable utility (TU) is a pair (N, v) where N represents the set 
of players and v is a valuation function v : 2N → R that associates with each coalition S ⊂ N a real 
value v(N) that the coalition members can freely redistribute among themselves. The set N  is also 
know as the grand coalition and the value v(∅) is zero by default. The function v is also known as a 
characteristic function and the game (N, v) is said to be in characteristic function form. A coalition 
S is a subset of players from N. The players are self-interested and attempt to maximize their own 
payoff (or utility). 
  A coalitional game with nontransferable utility (NTU) is a pair (N, v) where N  is a finite set 
of players indexed by i and v : 2N → 2R|S| is a map that associates to each coalition S ⊂ N a subset 
v(S) ∈ R|S| of attainable payoff vectors. NTU coalitional games specify exactly what divisions of 
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payoff are allowed and forbid all the other payoff divisions. The class of TU coalitional games is a 
subset of the class of NTU coalitional games. A TU coalitional game (N, v) can be specified as the 
NTU game (N, v), where v(S) = { x ∈ R|N|  such that ∑i∈S xi = v(S) and xj = 0 if j ∉ S }. 
  We introduce several classes of coalitional games that are useful when discussing solution 
concepts. A game (N, v) is superadditive if for all coalitions S, T ⊂  N such that S ∩ T =∅, v(S ∪ T) 
≥ v(S) + v(T). A game (N, v) is additive if for all coalitions S, T ⊂  N such that S ∩ T =∅, v(S ∪ T) 
= v(S) + v(T). A game (N, v) is constant-sum if for any coalition S ⊂  N, v(S) + v(N\S) = v(N). A 
game (N, v) is convex if for all S, T ⊂  N such that S ∩ T =∅, the following inequality holds: v(S ∪ 
T) ≥ v(S) + v(T) – v(S ∩ T). A game (N, v) is simple if for all coalitions S ⊂  N, v(S) ∈ {0, 1}. A 
coalition S in a simple game is said to be winning if v(S) = 1 and losing if v(S) = 0. 
  Given a coalitional game (N, v), a payoff vector x in RN is feasible if ∑i∈N xi ≤ v(N). That is, 
no payoff structure can promise the players more utility than the worth of the grand coalition N. A 
payoff structure is individually rational if any player receives under that payoff structure at least as 
much utility as they could obtain on their own. That is, for any player i, the inequality xi ≥ v({i}) 
holds. This is an important requirement in a game since it states that players cannot be forced to 
accept outcomes that are worse than what they could obtain on their own. The sum ∑i∈S xi is 
denoted by x(S). A payoff structure is coalitionally rational if for any coalition S ⊂  N  it is the case 
that x(S) ≥ v(S). The pre-imputation set, P, is defined as {x ∈∈ RN such that ∑i∈N xi = v(N)}. The 
pre-imputations are those payoff structures that are efficient, i.e. distribute completely the payoff of 
the grand coalition. The imputation set I is defined as {x ∈ P such that xi ≥ vi}. The imputation set 
consists of those pre-imputations that respect individual rationality. Given a set of outcomes, a 
change from one outcome to another that makes at least one player better off without making any 
other player worse off is called a Pareto improvement. The set of outcomes where no Pareto 
improvements can be made are said to be Pareto efficient (or optimal). The social welfare is the 
sum of utilities of all the players for a given outcome. It is not always the case that outcomes that 
maximize social welfare are also stable or viceversa. 
 In the game theoretic literature it is usually assumed that the grand coalition forms in 
equilibrium and the only problem to be solved is the division of payoffs among the players. This 
assumption is correct in superadditive games, where the addition of any player to a coalition brings 
positive utility for that coalition. However, it no longer holds in non-superadditive settings, where 
there may be negative interactions that prevent the players from forming the grand coalition. We 
will later look at games equipped with coalition structure, i.e. possible partitions of the set of 
players. 
 

3. The Core 
  The core is one of the oldest and best known stability solution concepts in coalitional games. 
A payoff structure belongs to the core if no group of players can deviate from the current payoff 
structure and obtain a better utility for themselves by doing so. A payoff vector x is S-feasible if 
x(S) = v(S), where x(S) = ∑i∈S xi. A payoff vector is feasible if it is N-feasible. Formally, the core of 
a TU coalitional game is the set {x ∈ P such that there is no coalition S and S-feasible payoff vector 
y such that yi > xi for all i ∈ S }. A slightly different version of the core is given by the set {x ∈ P 
such that there is no coalition S and payoff structure y ∈ v(S) with yi ≥  xi for all i ∈ S, and yj > xj 
for at least one player j }. That is, a coalition S can block if it does not degrade any of its members 
and strictly improves at least one player. This core is also known as the strong core, since it relaxes 
the conditions for blocking and is therefore more likely to be empty. The strong core is contained in 
the "weak" core, previously defined. 
  The NTU core has a similar definition to the TU core. The core of the NTU game (N, v) is 
the set {x ∈ v(N) such that there exists no coalition S and payoff structure y ∈ v(S) such that yi > xi 
for all i ∈ S}. A deviating group of players is called a blocking coalition (for that allocation). From 
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the point of rationality, the core is the set of allocations that respect both individual and coalitional 
rationality.  
 The following three player majority game has a nonempty core, depending on the value of a 
parameter. Assume that three players can get together one unit of profit, and two of them can obtain 
α ∈ [0, 1] independently of the actions of the third. A single player gets nothing. Formally, the 
game is the pair (N, v), where N = {1, 2, 3}, v(N) = 1, v(S) = α for |S| = 2, and v({i}) = 0 for any 
player i ∈ {1,2,3}. The core of the game is given by the set of payoff vectors (x1, x2, x3) such that xi 
≥ 0, x(N) = 1 and x(S) ≥ α whenever |S| = 2. The core is nonempty if and only if α ≤ 2/3. 
 As the examples illustrate, the core can be empty. This is problematic, because in empty 
core instances there is no way to divide the payoff without having some players deviate. The core 
can also be too large, case in which it leaves the payoff decision problem open. In both cases, other 
mechanisms such as contracts or social norms have to be used to enforce an outcome. There exist 
several approaches for guaranteeing nonemptiness of the core, such as identifying constraints that 
the game should satisfy, or relaxing the definition of the core itself. Non-additive constant-sum 
games always have an empty core. On the other hand, convex games always have a nonempty core. 
More generally, the Bondareva-Shapley theorem gives necessary and sufficient conditions for the 
core to exist. 
 A set λ of non-negative weights over 2N is balanced if for any player i ∈ N, ∑i∈S λ(S) = 1. A 
game (N, v) is balanced if and only if v(N) ≥ ∑S ⊂ N λ(S) v(S) for every balanced set of weights λ. 
The theorem (Bondareva-Shapley) states that a TU coalitional game has a nonempty core if and 
only if it is balanced. 
 To give some intuition into the notion of balancedness, consider that each player has a unit 
of time, which they can freely distribute among coalitions that they are a member of. For a coalition 
S to be active for a fraction of time λ(S), it must be that all of its members are active in S for that 
fraction of time. In that case, coalition S obtains a payoff of λ(S)v(S). Thus the condition of 
balanced weights requires that players don't allocate more time than they have. The game is 
balanced if no feasible allocation of time yields more than the value of the grand coalition v(N). 
 The Bondareva-Shapley theorem does not completely eliminate the difficulty of recognizing 
empty core games. In many NTU settings there is no obvious way of using the balancedness 
condition. Perhaps more importantly, knowing that a game has a nonempty core does not 
automatically give an algorithm for searching the core elements. Indeed, searching the core by brute 
force translates into enumerating all game configurations and checking the existence of a blocking 
coalition for each such configuration. In many games, even clever enumeration algorithms are still 
exponential because the problem of finding a blocking coalition itself is NP-hard. Another direction 
for obtaining existence of the core is to refine its definition. 
 

4. Extensions of the Core: Epsilon-Core, Core Cover, Reasonable Set, Weber Set 
 The epsilon-core requires that the players have sufficient incentives in order to deviate. That 
is, any blocking coalition must guarantee each of its players at least ε more payoff than they are 
currently getting.  Equivalently, a payoff vector x is in the epsilon-core of the game (N, v) if and 
only if for any coalition S ⊂ N, ∑i∈ S xi ≥ v(S) – ε. A variation of the epsilon-core can be obtained by 
requiring that a blocking coalition must guarantee each of its players at least ε more payoff than 
they are currently getting. For ε = 0, the two cores coincide. For ε positive, the epsilon-core is more 
likely to exist. For example, setting ε = ∞ ensures that any configuration is in the epsilon-core, 
since the cost of deviating is prohibitive. The nonempty epsilon-core obtained for the smallest value 
of ε is known as the least core. 
 Three sets related to the core are the core cover, the reasonable set, and the Weber set ([5]).  
All of these sets contain the core as a subset. We first introduce some definitions required for 
defining them. The marginal contribution of a player i to a coalition S is Mi(S) = v(S) – v(S\{i}). 
The marginal contribution is the amount by which the value of the coalition S would decrease if 
player i were to leave the coalition.  
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 The upper vector M of a game (N, v) contains at every coordinate i the marginal contribution 
Mi(N) of the player i to the grand coalition. This value is also known as the utopia payoff. If player i 
requires more than Mi(N), then it is always better for the other players to throw i out. Given 
nonempty coalition S and player i, let the remainder R(S, i) be the amount which remains for player 
i if all the other players in S receive their utopia payoffs: R(S, i) = v(S) - ∑ j ∈ S \{i} Mj (N). The lower 
vector m of a game (N, v) contains at every coordinate i the value: mi = max S : i ∈ S R(S, i). The value 
mi is the minimum right payoff for player i in the grand coalition. This player has the right to ask at 
least mi since otherwise he can threaten to form the blocking coalition S, where i would receive mi 
by allowing all the other players in S to get their utopia payoffs. 
 The core cover CC(N, v) is the set of all imputations contained between the lower vector and 
the upper vector. That is, CC(N, v) = { x ∈ I such that m ≤ x ≤ M }.  
 The reasonable set is defined as: R(N, v) = {x ∈ Rn such that v(i) ≤ xi ≤ max S : i ∈ S [v(S) – 
v(S\{i}]}. The reasonable set satisfies three axioms: symmetry, covariance, and monotonicity ([6]). 
Symmetry states that a reasonable outcome should not differentiate by players' names. Covariance 
requires that if a game is rescaled by changing the unit and the 0-value payoffs, the outcome should 
be rescaled accordingly. Monotonicity requires that players with larger marginal contributions 
receive higher payoffs. 
 The Weber set is defined using marginal contribution vectors. Let π(N) be the set of all 
permutations σ : N → N. The set Pσ(i) = { k ∈ N such that σ-1(k) < σ-1(i) } consists of all the 
predecessors of i with respect to permutation σ-. The marginal contribution vector mσ ∈ Rn with 
respect to σ has entries mσ

i = v(Pσ(i) ∪ {i}) – v(Pσ(i)), for each player i. For example, mσ
σ(1)  = 

v(σ(1)), mσ
σ(2)  = v(σ(1), σ(2)) – v(σ(1)), ..., mσ

σ(k)  = v(σ(1), ... σ(k)) – v(σ(1), ... σ(k)), for every k ∈ 
N. 
 The Weber set is the convex hull of all the marginal contribution vectors, corresponding to 
all the permutations of N. The payoff vector mσ  described above can be computed by allowing the 
players to enter the coalition in the order σ(1), ..., σ(n). Then each player is given the marginal 
contribution that he creates by entering in this order. The Weber set is characterized axiomatically 
by additivity, null (or dummy) player, efficiency, and monotonicity([7]). Additivity requires that the 
payoff obtained by combining two disjoint coalitions is the sum of their separate worth. A null 
player has zero marginal contribution in any coalition and he should always receive zero. Efficiency 
requires that the total gains are distributed. Monotonicity has been introduced in the axioms for the 
reasonable set. It is interesting to observe that for the class of convex games, the core and the Weber 
set coincide. The Weber set is closely related to the Shapley value, which we introduce next. 
 

5. The Shapley Value 
 The Shapley value is another axiomatic solution concept. It is unique among the solution 
concepts presented so far in that it always exists and contains exactly one point. The axioms 
characterizing the Shapley value are efficiency, symmetry, null player, and additivity. Again, 
efficiency requires that the worth of the grand coalition is distributed: ∑i∈ S xi = v(N). Symmetry 
states that interchangeable players should receive equal payoff, where two players are 
interchangeable if they have the same marginal contribution to every coalition. The Shapley value is 
the unique solution concept satisfying these four axioms. The Shapley value of player i in game (N, 
v) is: φi = 1/n! ∑S ⊆ N \ {i} |S|! (|N| - |S| - 1)! [v(S ∪ {i}) – v(S)]. Intuitively, the Shapley value 
captures the average marginal contribution of player i over all the possible orders in which the 
grand coalition could have been constructed. In convex games, the Shapley value is a member of 
the core. When the Shapley value is not in the core, it is possible that although the payoff division 
satisfies good properties, the players may refuse to stay in those configurations. In other words, the 
Shapley value does not satisfy coalitional rationality and certain groups of players may deviate if it 
is in their best interest to do so. 
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 Osborne and Rubinstein ([4]) describe an equivalent formulation of the Shapley value in 
terms of objections and counterobjections. First let (N, v) be a TU coalitional game. For each 
coalition S ⊂ N, define the subgame (S, vS) be a TU coalitional game such that vS(T) = v(T) for any 
T ⊆ S. Let φ be a feasible payoff function. An objection of player i against player j to the division x 
of v(N) could take one of the following forms: 
 

• "Give me more since otherwise I shall leave the game, causing you to obtain φj(N \ {i}, vN \ 

{i}), which is smaller than your current payoff by xj - φj(N \ {i}, vN \ {i})." 
• "Give me more since otherwise I shall convince the other players to exclude you from the 

game, allowing me to obtain φi(N \ {j}, vN \ {j}), which is larger than my current payoff by 
φi(N \ {j}, vN \ {j}) – xi." 

• Player j could counteract the first objection by asserting: 
• "Indeed, if you leave I will lose something, but if I leave, you will lose at least as much: xi - 

φi(N \ {j}, vN \ {j}) ≥ xj - φj(N \ {i}, vN \ {i}). 
• Player j could counteract the second objection by asserting: 
• "Indeed, by excluding me you will gain something, but I can exclude you and gain at least as 

much by doing that: φj(N \ {i}, vN \ {i}) – xj  ≥ φi(N \ {j}, vN \ {j}) – xi." 
 
 The Shapley value is required to satisfy the property that for every objection of any player i 
against j, there exists a counterobjection of player j. This requirement is equivalent to the balanced 
contributions property which states that for every TU coalitional game (N, v), φi(N, v) – φi(N \ {j},  
vN \ {j}) = φj(N, v) – φi(N \ {i}, vN \ {i}). The Shapley value is the unique solution concept that satisfies 
the balanced contributions property. 
 

6. The τ-Value and the Compromise Value 
 The τ-value was introduced by Tijs ([11]) and is defined on quasi-balanced games. A game 
(N, v) is quasi-balanced if m ≤ M and ∑i=1,n mi ≤ v(N) ≤  ∑i=1,n Mi, where m and M are the lower and 
upper vectors, respectively. The τ-value for a quasi-balanced game (N, v) is the point in the closed 
interval [m, M] ∈ Rn given by τ = m + λM. The parameter λ ∈ R is uniquely chosen such that ∑i ∈ N 
τi = v(N). The τ-value is the unique value that satisfies efficiency, restricted proportionality, and the 
minimal right property([12]) and it always exists. We have already introduced efficiency. The 
minimal right property states that any player i should receive at least its lower vector value, mi. The 
restricted proportionality axiom states that the τ-value is proportional to M if the lower vector is 
zero (mi = 0 for all i ∈ N). The τ-value satisfies a few more properties ([14]): individual rationality, 
null player, symmetry, and covariance. 

An example of the τ-value is given for the following game. Let (N, v) be such that N = {1, 2, 
3} and v({1}) = v({2}) = 0, v({3}) = v({1, 2}) = 100, v({1, 3}) = 200, v({2, 3}) = 300, v(N) = 400. 
The  upper vector for this game is M = (100, 200, 300). The lower vector m1 = max { v({1}) – 
M2(N), v({1, 3}) – M3(N), v(N) – M2(N) – M3(N) } = max { 0, -100, -100, -100 } = 0. Similarly, it 
can be verified that m2 = 0 and m3 = 100. Then the τ-value is the vector τ = (0, 0, 100) + λ(100, 
200, 200), where λ is chosen such that ∑i ∈ N τi = 400. This gives  λ = 3/5 and so the τ-value is 
τ=(60, 120, 220). 
 The compromise value is defined on the class of compromise admissible NTU games([14]). 
The lower and upper vectors can be defined on NTU games similarly to the TU setting. It can be 
proved that if (N, v) is an NTU game with nonempty core, then any payoff vector x in the core of 
the game satisfies the inequality m ≤ x ≤ M. For each nonempty coalition S, the set dom(S) = { x ∈ 
R|S| such that x < y for some y ∈ v(S) }. The payoffs in dom(S) are, in some sense, the best possible 
for coalition S, since there is no payoff vector y that would make everyone in S happier. An NTU 
game (N, v) is compromise admissible if m ≤ M, m ∈ v(N), and M ∉ dom(N). For a compromise 
admissible NTU game, the compromise value T is the unique point on the line between m and M 
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which lies in v(N) (i.e. T is allowed by the NTU game specification) and is nearest to the utopia 
payoff M. Formally, the compromise value is T = m + α* (M – m), where α* = max { α ∈ [0, 1] 
such that m + α (M – m) ∈ v(N) }. The compromise value is the equivalent formulation of the τ-
value on quasi-balanced TU games. 
 

7. The Stable Set 
 The stable set, also known as the von Neumann-Morgenstern solution, was initially 
proposed for two player games. The main idea behind this solution concept is that a coalition S that 
is unhappy with the current payoff structure should be able to object, by threatening to implement 
credible payoffs which are better for all the members of S. 
 An imputation x is an objection of the coalition S to imputation y if xi > yi for all players i ∈ 
S and x(S) ≤ v(S). In this case, imputation x is said to dominate imputation y via coalition  S. 
Observe that the core is the set of all imputations to which there exists no objection. We introduce 
two notions of stability that will be used to define the stable set. 
 A set of imputations Y satisfies internal stability if no imputation y ∈ Y has an objection via 
some coalition S. A set of imputations  Y satisfies external stability if for any imputation z � Y, 
there exists an objection y ∈ Y. A stable set is a set of imputations that satisfy internal and external 
stability. Each stable set can be interpreted as acceptable behaviours in society. No acceptable 
behaviour is preferred to another, and for every unacceptable behaviour there exists an acceptable 
alternative. While a game has only one core, it may have more than one stable set, none of which 
are subsets of each other. However, the core is a subset of any stable set and if the core is a stable 
set itself, then it is the only one. The stable set may also be empty. 
 An example of a game with a stable set is the following three player majority game. Let (N, 
v) be such that N = {1, 2, 3} and v(S) = 1 for |S| ≥ 2 and v(S) = 0 otherwise. A stable set for this 
game is Y = {(½, ½, 0), (½, 0, ½), (0, ½, ½)}. Equality is preferred when sharing the available unit. 
 

8. The Bargaining Set 
 The bargaining set was proposed by Aumann and Maschler and is defined similarly to the 
Shapley value, in terms of individual objections and counterobjections. Consider a pair (y, S), where 
S is a coalition and y is a payoff vector feasible from the point of view of S, i.e. ∑i∈S xi ≤ v(S).  

• (y, S) is an objection of player i against j to payoff x if S includes i but not j and yk > xk for 
all k ∈ S. That is, player i can find a coalition S that excludes j, and by doing so guarantees a 
better payoff for all the players in S, including i. 

• (z, T) is a counterobjection to objection (y, S) if z is a payoff vector feasible for T, coalition T 
includes player j but not i, zk ≥ xk for all k ∈ T and zk ≥ yk for all k ∈ S ∩ T. That is, player j 
can counterbalance i's objection by finding a coalition T that excludes i, to which j can 
guarantee a better payoff than they are currently being offered. 

 The bargaining set of a TU game (N, v) is the set of imputations x such that for every 
objection (y, S) to x of any player i against any player j, there exists a counterobjection (z, T) that j 
can make. The core is a subset of the bargaining set, and for convex games they coincide. Unlike 
the core, the bargaining set is always nonempty. In the three player majority game, the bargaining 
set is the vector Y = {(1/3, 1/3, 1/3)}. It can be verified that every individual objection has a 
counterobjection. 
 There exist several variations on the classical Aumann-Maschler bargaining set. Observe 
that the core consists of payoff structures to which there exist no objections. However, the core does 
not asses the credibility of these objections. The bargaining set can  be seen as a solution concept 
that addresses this credibility problem, by stipulating that an objection is justified only when it has 
no counterobjections. This requirement makes blocking harder and stabilizes the game, ensuring  
that the bargaining set is always nonempty. Mas-Colell([9]) proposes a modified version of the 
bargaining set in which the counterobjections must also be verified for their credibility. Dutta et al 
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([8]) generalize this idea to a chain of objections, in which the credibility of each objection is 
challenged. A terminating object for a chain of objections is an objection to which there exists no 
counterobjection. Since the number of coalitions is finite, it follows that each chain must eventually 
terminate. This fact is used to assess the validity of the original objection. The consistent 
bargaining set is the set of payoff structures with no valid objections. 
 Bennet ([16]) introduces the aspiration bargaining set. The aspiration approach to coalition 
formation asks the following question: Given a payoff vector x, when can player i view his 
component xi as potentially attainable? Player i could view xi as potentially attainable if there is a 
coalition S containing i which can afford x, that is x(S) ≤ v(S). A payoff vector x in which each 
player i can view their payoff xi as potentially attainable is called an anticipation. Formally, payoff 
vector x is an anticipation for the game (N, v) if for every player i ∈ N, there exists a coalition S 
such that x(S) ≤ v(S). Anticipations are not always rational outcomes. For example, in some games 
an anticipation can be the zero vector, in which every player receives payoff xi = 0. However, the 
self interest of the players is likely to lead to higher anticipations whenever possible. Consider the 
situation during negotiations where some coalition S has a surplus of payoff after each player 
received xi, i.e. v(S) > x(S). It would be reasonable to expect that the payoff anticipations would 
increase until there was no longer a surplus, and anticipations with no surplus are called aspirations. 
 Anticipation x is an aspiration if for every anticipation vector y and coalition S that satisfies 
yj > xj and yi ≥ xi, for all i and some j in S, it follows that y(S) > v(S). Not all aspirations are 
reasonable. If given payoff structure x and two players i, j ∈ S such that every coalition S � i that 
can realize x also contains j, then player i needs j to realize payoff xi. However, if j can obtain xj 
without player i, then i is in a vulnerable position with respect to j, and player j can argue that they 
should receive more payoff. An aspiration in which no player is vulnerable is called a bargaining 
aspiration, and the set of all bargaining aspirations is called the aspiration bargaining set. The 
aspiration bargaining set can also be defined for NTU games ([17]). 
 

9. The Kernel 
 The kernel was introduced by Davis and Maschler. Given an imputation x of the TU 
coalitional game (N, v), let e(S, x) = v(S) – x(S) be the excess of the coalition S at x. If the excess is 
positive, then coalition S must sacrifice the amount e(S, x) to have imputation x implemented. If the 
excess is negative, then e(S, x) is the bonus that coalition S receives when x is implemented. The 
kernel is defined in terms of objections and counterobjections as follows: 

• Player i objects against j in imputation x by pointing out there is coalition S that includes i 
but excludes j, and xj > v({j}). From player i's point of view, coalition S is required to 
sacrifice too much in the absence of player j. 

• Player j can counterobject to i with coalition T that includes j but excludes i, and e(T, x) ≥ 
e(S, x). Player j's counterargument is the existence of a coalition T that excludes player i and 
sacrifices equally or more. 

  The kernel is the set of imputations such that for any objection of any player i against any 
player j, there exists a counterobjection that j can bring. The kernel can be alternatively defined 
using the maximum excess. For any two players i and j, let sij(x) be the maximum excess of any 
coalition containing i but not j: sij(x) = max S ∈ C { e(S, x) where i ∈ S and j ∉ S }. Then the kernel is 
the set of imputations x such that for any two players i and j, either sji(x) ≥ sij(x) or xj = v({j}). The 
requirement xj = v({j}) states that no-one cannot object against a player that merely receives their 
individually rational outcome. The kernel of the three player majority game is {(1/3, 1/3, 1/3)}. 
 
 10. The Nucleolus  
 The nucleolus was introduced by Schmeidler. The excess e(S, x) can be interpreted as the 
strength of the complaint of coalition S against imputation x. The higher the complaint, the more 
unhappy coalition S is with imputation x and the more loudly it protests against x. The nucleolus 
attempts to minimize the complaints under the budget constraints (the feasibility of x). The 
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minimization is done by resolving the loudest complaint first, then the next loudest, until finishing 
all the complaints. The resulting imputation is a lexicographic minimum of all the complaints. The 
nucleolus of any TU coalitional game is nonempty and a subset of the kernel. Since the kernel is a 
subset of the bargaining set, the nucleolus is also included in the bargaining set. Moreover, the 
nucleolus is a singleton. 
 An equivalent definition of the nucleolus can be formulated in terms of objections and 
counterobjections. A pair (S, y) consisting of a coalition S and imputation y is an objection to 
imputation x if e(S, x) > e(S, y). Equivalently, y(S) > x(S), implying that coalition S objects to 
imputation x because it receives a better payoff under imputation y. A coalition T is a counter-
objection to the objection (S, y) if e(T, y) > e(T, x) (i.e. x(T) > y(T)) and e(T, y) ≥ e(S, x). Coalition T 
receives a better payoff under imputation y and T has a higher complaint under y than S under x. 
 

11. The Shapley-Shubik and Banzhaf Power Index 
 The Banzhaf power index was introduced by John Banzhaf III for the purpose of analyzing 
voting systems. The main idea behind the Banzhaf power index is that the voting power of a player 
comes from their ability to change the outcomes of elections. Let (N, v) be a simple coalitional 
game. For each player i, the Banzhaf index is defined as the proportion of all voting outcomes in 
which the result would be different if i changed their vote. Intuitively, the player is pivotal for those 
outcomes. A player that is pivotal for any winning coalition is a dictator. The Banzhaf index 
satisfies symmetry and the dummy player axioms. If the game is normalized, it also satisfies 
efficiency. The Banzhaf index is not additive. Formally, the Banzhaf index of player i is βi = 1/2n-1 
Σi∈S⊂N [ v(S) – v(S\{i}) ]. 
 The Shapley-Shubik power index applies the Shapley value to simple games. The players are 
assumed to vote in order. A player i is pivotal for an ordering if the respective coalition was losing 
before i was introduced, but winning afterwards. The Shapley-Shubik index is the fraction of all n! 
orderings in which the player is pivotal. Formally, the Shapley-Shubik index of player i is φi =  
Σi∈S⊂N  1/|N|! (|S| - 1)! (|N| - |S|)! [ v(S) – v(S\{i}) ]. Both the Banzhaf and Shapley-Shubik indices 
are weighted marginal contributions.   
 

12. Games and Representations 
 The standard definition of coalitional games in characteristic function form is exponential in 
the number of agents. For a game (N, v), the characteristic function v specifies the payoff for each 
of the 2|N| possible coalitions of N. If these coalition values are not related to each other in a 
meaningful way, a search algorithm has to examine all the possible coalitions, and thus none of the 
solution concepts discussed so far can be computed in polynomial time in the number of players. 
There has been much recent work in the computer science community proposing new classes of 
coalitional games that are succinct, yet provide a rich enough structure to have interesting 
coalitional properties. 
 Deng and Papadimitriou ([23]) suggest using computational complexity as a criterion for 
judging whether a solution concept is appropriate or not. If a solution concept is to be useful, then 
the complexity of determining the outcomes predicted by that solution concept should not be too 
great. As we already mentioned, if the characteristic function randomly assigns values to coalitions, 
then searching for solution concepts is clearly exponential in the number of players. The question 
becomes more interesting when the representation is polynomial. Deng and Papadimitriou propose 
the following game. Given an undirected graph G = (N, E), let wi,j be the weight on each edge (i, j). 
Each node of the graph represents a player and a coalition S can guarantee for its players the weight 
of the subgraph induced by the corresponding nodes: v(S) = ∑(i, j)⊆ S wi,j. If all the weights are 
nonnegative, the game is convex. The Shapley value for this game can be computed in polynomial 
time and  it is half the sum of edge weights adjacent to each node. The core is easy to find when the 
game is convex, but intractable otherwise. The kernel, the nucleolus, the epsilon-core, and the 
bargaining set are also intractable. The stable set is believed to be undecidable. 
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 Weighted voting games assign to each player i a weight wi and define an overall game quota 
q. A coalition S is winning if and only if the sum of weights of its players exceeds the quota. Thus 
v(S) = 1 if ∑i∈S wi ≥ q, and v(S) = 0, otherwise. The game is denoted by (q, w1, ..., wn). Computing 
the Shapley value is #P for these games ([24]). There exists a pseudopolynomial time algorithm by 
dynamic programming. However, approximating the Shapley value within a constant factor is 
intractable. Similar hardness results exist for the core, the least core, and the nucleolus. Determining 
emptiness of the core can be done in polynomial time, but finding imputations in the least core or 
the nucleolus is NP-hard. Pseudopolynomial algorithms exist for these solution concepts ([24], 
[25]). Chalkiadakis et al ([30]) introduce coalitional games with beliefs, a generalization of 
coalitional games to environments where players have private beliefs about the capabilities of the 
other players. They introduce a notion of the core for games with beliefs, with and without coalition 
structure. They give hardness results and analyze weighted voting games with beliefs. Introducing  
beliefs in weighted voting games adds a layer of complexity and the core-related questions become 
even harder to answer. 
 Qualitative coalitional games have been introduced by Wooldridge and Dunne ([26]). The 
players are assumed to have goals that they want to achieve, and are happy when they are in a 
coalition where they can accomplish at least some of those goals. A qualitative coalitional game is 
specified by a set N of players and a collection {Gi} of sets of goals, where Gi represents the goals 
that player i wants to achieve, and is drawn from a set G of overall goals. In addition, a 
characteristic function v : 2N → 2P(G), where P(G) is the set of all possible subsets of the goals, and 
v(S) denotes the goals that coalition S could achieve in each of the possible ways that its players 
could cooperate. Wooldridge and Dunne propose a representation based on propositional logic, 
which is complete, but not always succinct. Checking nonemptiness of the core is D1

p complete. 
 Coalitional resource games ([27]) are a variation of qualitative coalitional games in which 
the game is given by a set of players, a set of goals for each player, an endowment function that 
specifies the resources of each player, and a requirement function that indicates, for each goal, the 
resources that have to be spent in order to achieve that goal. Resource games are a strict subset of 
qualitative coalitional games and can always be represented succinctly. A coalition is successful if it 
can cooperate in such a way to achieve at least one goal for each of its members. A resource is 
necessary if exploiting that resource is required for every successful coalition. Deciding the success 
of a coalition and whether a resource is necessary are NP-complete and co-NP-complete, 
respectively. Dunne et al ([28]) investigate further the complexity of coalitional resource games and 
show that checking nonemptiness of the core is NP-hard. They show that checking stability is 
exponential in the number of goals, but polynomial in the number of  players and resources, and 
thus feasible for games with bounded number of goals. They also give a negotiation protocol that 
guarantees several attractive properties. 
 Coalitional skill games have been introduced by Bachrach and Rosenschein ([29]). A 
coalitional skill game is specified by a set of players, a set of tasks, and a set of skills. Each agent is 
endowed with a set of skills, and every task requires certain skills. A coalition can perform a task if 
every skill required to perform it is owned by some player in that coalition. The characteristic 
function of a coalition is the value of the tasks that can be performed by that coalition. The authors 
examine complexity questions such as determining the value of a coalition, checking nonemptiness 
of the core and finding it, computing the Shapley value and Banzhaf power index. The questions 
about the core can be answered in polynomial time for simpler versions of coalitional skill games, 
but are intractable otherwise. Computing the Shapley value is NP-hard and the Banzhaf power 
index is #P-complete. 
 Cooperative boolean games are a compact family of coalitional games ([30]). Each player 
has a goal which is represented as a formula of boolean variables. A player has unique control over 
a subset of variables and can freely set their values. However, the action of setting variable values is 
costly. The game specifies a cost function for each of these actions and the players aim to achieve 
their goals while minimizing the costs. Cost minimization can only be accomplished by 
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cooperating. Search algorithms for the core and the stable set are investigated and turn out to be 
intractable. 
 There exists a rich literature on hedonic games ([32]), where each player's payoff is entirely 
determined by  the identity of the other members of their coalition. Consider a set N of players. A 
coalition partition Π = {Sk}k=1,K is a disjoint set of coalitions that exhaustively partitions N. Each 
player has preferences over the coalition structures which are completely determined by the  
coalition that the player belongs to. A hedonic game is a pair (N, >) of players and preferences. 
Bogomolnaia and Jackson study Pareto efficiency and the existence of several stability properties, 
such as the core, individual and Nash stability. Elkind and Wooldridge ([33]) study a succinct, rule-
based representation for hedonic games and give hardness results for the complexity of core related 
questions under this representation. Branzei and Larson ([34]) look at a subset of hedonic games 
that can be modeled by a graph for which they characterize the maximal welfare partitions and 
compute a bound for the cost of stability. 
 Network flow games are a class of simple games on a directed graph ([35]). The edges of the 
graph have capacities corresponding to the bandwidth of the edge. This game models many real 
situations, such as a network of connected computers, where the edges are the network connections 
and the weights the number of bits per second that can be transmitted through that connection. 
Given a network N and a set of players S, N↓S denotes the network flow that is completely owned 
by the players in S. For two points P1 and P2 in the network and an amount of flow (bandwidth) b 
that has to be ensured between the two points, a simple game can be defined as follows. Let the 
characteristic function v be such that v(S) = 1 if  N↓S allows a flow of b between P1 and P2, and v(S) 
= 0 otherwise. Determining the Shapley value is NP-hard unless restrictions are imposed on the 
network. Bachrach and Rosenschein ([36]) show that computing the Banzhaf power index in 
network flow games is also intractable. 
 Ieong and Shoham ([37]) propose a fully expressive representation based on rules that 
describe the marginal contributions of the players. Marginal contribution nets are succinct for some 
natural classes of games such as recommendation games, but can be exponential in worst case. 
Marginal contribution nets are used to develop an efficient algorithm for the Shapley value, and an 
algorithm for determining core membership and core emptiness that  is exponential only in the 
treewidth of the net. The synergy representation ([1], Ch 12) is complete for superadditive games. 
The idea is that the game is stored as a pair (N, s), where N is a set of players and s is a function  
mapping each coalition C to a value s(C). This value is the synergy generated by coalition C when 
its members work together. It is important to note that only strictly positive synergies are included 
in the game specification. Conitzer and Sandholm ([38]) propose a concise approach in which  
games are decomposed in several issues, such that each issue has its own characteristic function. A 
multi-issue representation is a collection of coalitional games (issues) (N1, v1), ... (Nk, vk) which 
together form the game (N, v). The set of players is N = N1 ∪ ... ∪ Nk and the characteristic function 
is v(S) = ∑i=1,k vi(Ni ∩ S) for every coalition S ⊆ N. The multi-issue representation is universal and 
allows computation of the Shapley value in linear time in the size of the input. Algorithms for the 
core, such as checking core membership remain NP-hard. 
 

13. The Search for New Solution Concepts 
 Solution concepts have been introduced as tools that can describe and predict the outcomes 
of coalitional games. As we have seen, many game representations have been recently emerging,  
but unfortunately the algorithms for computing their solution concepts have prohibitive runtime 
complexity. 
 The core, perhaps the most convincing equilibrium concept for coalitional games, has some 
major problems. Finding the core is NP-hard even for very simple classes of games. In addition, the 
core can be either empty or too large, cases in which other social rules must be used to select an 
appropriate outcome. The core extensions, such as the epsilon-core and the least-core are less 
convincing. The epsilon-core may be appropriate in some settings, where there exist costs 
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associated with deviating. However, there is no reason to believe that the utilities of the players are 
always comparable and that they will incur the same epsilon penalty for deviating every time they 
try to do so. The epsilon-core can also be empty. The least core is always nonempty, but the 
smallest epsilon constraint seems somewhat artificial. It is not clear that the cost of blocking can 
indeed be set up at the value required for the epsilon-core to exist. In addition, finding the least core 
is at least as hard as finding the core. The stable set always exists, but is often too large to make any 
meaningful predictions. NP-hardness results also exist about the nucleolus, stable set, bargaining 
set, kernel in a variety of games. 
 The problems illustrated with solution concepts are not unique to coalitional games. Pure 
Nash equilibrium, the most influential solution concept in non-cooperative game theory, suffers 
from similar drawbacks. Pure Nash equilibrium does not always exist. Mixed Nash equilibrium is 
guaranteed to exist, but is not very realistic, since it requires the players to randomize between 
equally attractive options with the sole purpose of inducing a similar behaviour in their opponent. 
Moreover, Nash equilibrium is PPAD-complete, thus very likely intractable ([2]). Correlated 
equilibrium, a generalization of Nash, is not necessarily a good replacement, as it requires a 
complicated machinery with a trusted randomizer. 
 Fabrikant and Papadimitriou ([18]) and Papadimitriou ([19]) propose an agenda for finding  
new game theoretic solution concepts. The solution concept should be a natural, compelling, 
convincing, and realistic model of behaviour. It should be tractable and guaranteed to exist in order 
to have universal applicability. There have been several attempts of finding solution concepts to 
replace Nash equilibrium. Among these, we mention sink equilibrium, unit recall equilibrium, 
CURB sets, and iterated regret minimization. While this agenda is mostly geared towards 
noncooperative game theory, we believe that coalitional solution concepts exhibit similar problems 
and that it would be useful to find a solution concept with these desiderata in mind. In particular, we 
would like an equilibrium solution concept for coalitional games that is as compelling as the core, 
but satisfies universal existence and ensures good complexity. It would be interesting to know if 
requiring individual rationality, tractability, universal existence, and a different notion of group 
rationality is feasible. An impossibility result for a satisfactory concept of stability in hedonic 
games has been given by Barbera and Gerber ([22]). A short list of axioms, namely universal 
existence, symmetry, Pareto optimality, and self-consistency cannot be satisfied by any solution 
concept. Their counterexample  parallels Arrow's impossibility theorem in voting. 
 The core has also been criticized for the extremely myopic behaviour of the players, who  
disregard the consequences of their actions. It is possible that by deviating, a player would guide the 
coalition structure to an equilibrium with possibly disastrous payoff for that player. The stable set 
has a similar problem. Greenberg ([10]) shows that the stable set requires optimism from the 
members of a deviating coalition, since they would proceed with deviating if at least one of the final 
outcomes would benefit that coalition. Greenberg proposes a version of conservative stability, in 
which players only proceed with a deviation if every possible final outcome makes its members 
better of. Diamantoudi and Xue ([20]) investigate farsightedness in hedonic games. 
 The classic definition of the core does not take into account the fact that players in natural 
scenarios are computationally bounded, and may not be able to find a blocking coalition. A possible 
interpretation of boundedness is that blocking coalitions cannot be larger than a parameter k. For k 
= 1, a player can only check if their individual rationality is respected. For k = n, a player can verify 
all the possible coalitions when searching for a better payoff. Sandholm and Lesser ([21]) develop a 
normative, application- and protocol-independent theory of coalition formation for computationally 
bounded players and introduce the bounded-rational core. The bounded-rational core is equivalent 
to the classical core concept when players have complete search algorithms and computation is 
costless. There still exist games where the bounded-rational core is empty. 
 Another criticism of the core is with respect to its fragility. In any game configuration, it is 
sufficient that one blocking coalition exists for that configuration to automatically be labeled 
unstable. This assumption seems quite strong because of its combinatorial operator. In social 
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settings, if we view riots or revolutions as instances of blocking coalitions, it is not realistic to 
assume that players will exhaustively search the possible groups in society in order to find a 
coalition to protest with. Rather, what seems to be happening in these situations is that there exists 
enough unhappiness in that society and, as a result, potential blocking coalitions are numerous and  
players can easily find a deviating group. 
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