
©2023 Published by LUMEN Publishing. This is an open access article under the CC BY-NC-ND license

BRAIN. Broad Research in Artificial Intelligence and Neuroscience
ISSN: 2068-0473 | e-ISSN: 2067-3957
Covered in: Web of Science (WOS); PubMed.gov; IndexCopernicus; The Linguist List; Google Academic; Ulrichs; getCITED;

Genamics JournalSeek; J-Gate; SHERPA/RoMEO; Dayang Journal System; Public Knowledge Project; BIUM; NewJour; ArticleReach

Direct; Link+; CSB; CiteSeerX; Socolar; KVK; WorldCat; CrossRef; Ideas RePeC; Econpapers; Socionet.

2023, Volume 14, Issue 2, pages: 76-92 | https://doi.org/10.18662/brain/14.2/445
Submitted: June 6th, 2023 | Accepted for publication: June 28th, 2023

Can Neural Networks
Enhance Physics
Simulations?

Cristian-Dumitru AVATAVULUI 1,
Rareş-Cristian IFRIM 2

Mihai VONCILĂ 3

1 PhD student., University Politehnica of
Bucharest, 060042 Bucharest, Romania,
cristian.avatavului@stud.acs.pub.ro
2 PhD student, Eng., University Politehnica
of Bucharest, 060042 Bucharest, Romania,
rares.ifrim@stud.fils.upb.ro
3 PhD student, Eng., University Politehnica
of Bucharest, 060042 Bucharest, Romania,
mihai.voncila@stud.acs.pub.ro

Abstract: The primary objective of this research manuscript is to
design, develop, and evaluate an artificial neural network architecture
that is capable of emulating and predicting the dynamic interaction
patterns manifested during the encounter between two distinct entities.
This endeavor is primarily centered around computational learning and
understanding of the associated physical impulses that emerge when
these objects engage in contact, elucidating the complex physical
interplays therein. This process incorporates the strategic use of an
extant physics engine to generate the requisite training datasets, thereby
providing a robust and comprehensive foundation for neural network
training and subsequent performance evaluation. In order to scrutinize
and substantiate the effectiveness of the proposed artificial neural
network model, this investigation also embarks on a rigorous
comparative analysis. The principal focus of this comparison is to
juxtapose the results rendered by the trained neural network vis-a-vis
those produced by the original physics engine. The goal here is to gauge
the precision, reliability, and practicality of the trained model in
accurately predicting the physical impulses, thereby demonstrating its
potential to stand as a feasible alternative to the traditional physics
engine. Despite the initial success of this endeavor, it is worth noting
that the proposed neural network system managed to achieve a range of
prediction rates, oscillating between 60% and 91%, contingent upon
the specific test scenario. While these preliminary results are promising,
they elucidate the necessity for further optimization and refinement to
bolster the model's performance and prediction accuracy.

Keywords: Neural Networks, Physics Engine, Collision Optimizer,
Impulse-based Physics, Box2D.

How to cite: Avatavului, C. D., Ifrim, R.-C., Voncilă, M.
(2023). Can Neural Networks Enhance Physics Simulations?
BRAIN. Broad Research in Artificial Intelligence and Neuroscience,
14(2), 76-92. https://doi.org/10.18662/brain/14.2/445

https://doi.org/10.18662/brain/14.2/445
file:///D:/EDITURA%20LUMEN/BRAIN%20IULIE%202023/BRAIN_14_2_2023_de_paginat/cristian.avatavului@stud.acs.pub.ro
mailto:rares.ifrim@stud.fils.upb.ro
file:///D:/EDITURA%20LUMEN/BRAIN%20IULIE%202023/BRAIN_14_2_2023_de_paginat/mihai.voncila@stud.acs.pub.ro
https://doi.org/10.18662/brain/14.2/445

Can Neural Networks Enhance Physics Simulations?
Cristian Dumitru AVATAVULUI, Rareş-Cristian IFRIM et Mihai VONCILĂ

77

1. Introduction

This research paper critically examines the computational and
economic demands associated with the creation and utilization of
conventional simulation mechanisms. These traditional simulators
necessitate considerable technical resources and extended development
timelines. Additionally, these platforms must undergo continuous updates
throughout their lifecycle to optimize their precision, often within the
constraints of a restricted range of operational parameters. Given these
circumstances, the attractiveness of alternative methodologies for physical
simulation, specifically those premised on data-centric techniques, is brought
into focus.

Data-based methods for physical simulation offer considerable
advantages for interactive applications. These methodologies are
characterized by their unique ability to balance precomputation and memory
footprints, consequently enhancing operational performance. This
compromise results in systems that not only demonstrate superior run-time
efficiency, but also preserve the accuracy and fidelity of the simulation.

Moreover, the advent of trained physics engines presents a
tantalizing prospect for improved simulation outcomes. These intelligent
systems can be configured to ingest real-world measurement data as input.
This allows the engines to harmoniously merge the strengths of both real-
time simulation engines, which prioritize rapid simulations albeit without
verisimilitude, and high-accuracy simulation engines, which emphasize
accurate, real-world-like simulations but often require substantial
computational resources. Consequently, trained physics engines embody a
fusion of these two paradigms, yielding a more efficient, effective, and
realistic simulation.

Existing physics engines, as referenced in works Millington (2007),
Todorov et al. (2012), and Tompson et al. (2017), implement various
equations of motion or a synergy thereof to emulate the behaviors of objects
characterized by specific parameters such as mass and volume, particularly in
scenarios involving contact dynamics. Prominent among these equations are
Lagrange multiplier (Bertsekas, 2014; Solsvik & Jakobsen, 2015), and
Impulse dynamics (Bender, 2007), among others. Broadly, these engines can
be categorized into two types: high-accuracy physics engines and real-time
physics engines (Wikipedia, 2021).

High-accuracy physics engines employ complexly formulated
equations of motion to achieve the most authentic environmental simulation

Broad Research in
Artificial Intelligence and Neuroscience

June 2023
Volume 14, Issue 2

78

possible. However, this sophistication comes with significant computational
requirements. The computational intensity is not only inherent in the engine
but also extends to the systems on which the simulations are deployed, thus
imposing considerable performance demands.

Conversely, real-time physics engines are known for their speed
(Wikipedia, 2021) and are commonly employed in applications such as video
games and film production, where high frame rates per second are critical
for an enhanced user experience. While these engines provide quick
simulations, their accuracy may be compromised as they predominantly rely
on predictive mechanisms rather than thorough calculations.

The integration of neural networks and machine learning
methodologies into the domain of physics simulation presents an intuitively
compelling proposition. Specifically, once a neural network is adequately
trained, it can deliver almost instantaneous predictions, a feature that is
particularly enhanced when deployed on parallel computing systems such as
Graphical Processing Units (GPUs) (Gajurel et al., 2020). This potent
combination of speed and parallelism makes neural networks an appealing
tool for real-time physics simulations.

In the context of this investigation, we leverage a streamlined variant
of the Box2D physics engine (Catto, 2021). Box2D is a straightforward rigid
body engine that operates exclusively with two-dimensional geometric
objects, specifically rectangles and circles. It utilizes impulse dynamics as its
foundational equations of motion, rendering it suitable for our research
context. This lean version of Box2D comprises three integral modules:
Common, Collision, and Dynamics.

• The Common module encapsulates functionality pertaining to
memory allocation, mathematical operations, and operational
settings. As a foundational layer of the engine, it plays a vital role
in the smooth operation and efficiency of the entire system.

• The Collision module, on the other hand, is responsible for shape
definition, broad-phase collision determination, and execution of
collision functions or queries. This component ensures that the
interaction of objects within the simulated environment is
calculated accurately and realistically.

• Lastly, the Dynamics module imparts the core physics simulation
capabilities to the engine. It is here that the simulated world,
bodies, fixtures, and joints are established, setting the stage for the
detailed and complex physics simulations that the engine is
capable of. The interplay of these three modules provides the
system with a broad suite of functionalities, from basic

Can Neural Networks Enhance Physics Simulations?
Cristian Dumitru AVATAVULUI, Rareş-Cristian IFRIM et Mihai VONCILĂ

79

mathematical operations to intricate simulations of object
interactions.

The operational loop of the Box2D-Lite physics engine, which
encapsulates the key operational stages and sequence of the engine, is
graphically represented in Figure 1. This schematic provides a detailed and
comprehensive overview of the engine's operational workflow, enabling a
more nuanced understanding of the computational and operational
intricacies inherent in the system.

Figure 1. Illustration of the Operational Loop in the Box2D-Lite Physics Engine
Source: Author's own conception

The collision detection subsystem of the Box2D-Lite physics engine
operates in two distinct yet complementary phases: the Broad Phase and the
Narrow Phase (Catto, 2021). Each phase is characterized by its specific
functionalities and processes, with the output of one phase feeding into the
next, creating a streamlined and efficient collision detection pipeline.

During the Broad Phase, the engine performs a preliminary scan of
the simulated environment, identifying pairs of objects whose bounding
boxes overlap. Each overlapping pair is earmarked for further analysis in the
ensuing Narrow Phase. To facilitate this process, the engine constructs an
“arbiter” - a special object or data structure - for every pair identified in the
Broad Phase. These arbiters serve as placeholders for the pairs of
overlapping boxes, encapsulating relevant information about the pair and
preparing the system for a more detailed analysis of the collision.

Upon creation or update of an arbiter, the engine transitions to the
Narrow Phase of collision detection. Here, the collision analysis is more
granular and detailed, with the focus shifted from broad overlap to specific
points of contact and their respective physical implications. Specifically, the
Narrow Phase collision operation involves the identification of the normal
vector that corresponds to the minimum penetration between the objects in
the pair. This vector provides valuable insights into the nature of the
contact, the potential forces involved, and the resultant motion of the
objects. The operation and outcomes of the Narrow Phase collision
detection are visually represented in Figure 2.

collisio

n

apply forces solve constraints update positions

time step game input

Broad Research in
Artificial Intelligence and Neuroscience

June 2023
Volume 14, Issue 2

80

Through the combination of Broad and Narrow Phase collision
detection, the Box2D-Lite physics engine ensures that collisions are detected
promptly and accurately, thereby enhancing the realism and fidelity of the
simulations it produces.

 n

Figure 2. Detailed Visualization of the Narrow Phase Collision Detection Mechanism
Focusing on Box-against-Box Interactions

Source: Author's own conception

Following the precise detection of collisions, the engine proceeds to
compute the effects of these interactions on the involved bodies. This
constitutes the force application step where the engine employs Newton's
second law of motion to calculate changes in both linear and angular velocities
of each object present in the scene. This law stipulates that the rate of change
in momentum of an object is directly proportional to the net force applied and
occurs in the direction of this force. By applying this law, the engine
determines the subsequent motion trajectory of each object post-collision.

Subsequently, the system advances to the 'constraint-solving' phase.
In this critical step, the engine derives the impulse exchanged between the
two colliding objects, again harnessing Newton's second and third laws of
motion. Here, the laws are applied in the context of the relative velocity at
the point of contact between the two bodies. The outcome of this process is
the determination of both the magnitude and direction of the impulse
exerted during the collision. This information is then utilized to calculate the
instantaneous change in the velocities of the colliding objects, adhering to
the principles of impulse-momentum theory (Catto, 2009).

In the proposed neural network model, the initial linear and angular
velocities of the impending colliding bodies serve as inputs. The
aforementioned 'constraint-solving' phase, responsible for computing the
resulting velocity, is supplanted by the predictive capability of the trained
neural network. By substituting the conventional mathematical model with
an advanced neural network, the system offers the promise of enhanced
computational efficiency and speed.

...…………

penetration

....………………….

Can Neural Networks Enhance Physics Simulations?
Cristian Dumitru AVATAVULUI, Rareş-Cristian IFRIM et Mihai VONCILĂ

81

To facilitate the training and evaluation of the neural network,
several random test cases are generated, each presenting objects in distinct
scenarios. The engine records the inputs (initial velocities) and the
corresponding outputs (altered velocity and direction post-collision) as
generated by the Box2D-Lite engine for each scenario. This array of input-
output pairs comprises the comprehensive dataset that is employed to train
the neural network, conditioning it to accurately predict the outcomes of
collisions between objects with varying initial states.

2. Related work

Recent research, as referenced in Holden et al. (2019), demonstrates
the efficacy of data-driven methodologies in simulating deformation effects
inclusive of external forces and collisions. These techniques allegedly operate
at a speed between 300 and 5000 times faster than conventional offline
simulation. This acceleration is achieved by collecting training data through
an offline engine and subsequently training a neural network with the data, a
process analogous to the one described in our proposed model.

The work presented in Ajay et al. (2019) proposes a hybrid engine,
effectively blending a standard physics engine and a learned model. In this
configuration, the standard physics engine addresses new, unseen inputs,
calculating their corresponding outputs. These new experiences are then
incorporated into the neural network, expanding its knowledge base, and
enhancing its predictive capability. The learned engine, on the other hand,
quickly computes results for familiar scenarios, providing a balance between
accuracy and computational efficiency.

Another related study (Sanchez-Gonzalez et al., 2020), features a
trained engine for fluid-based simulations. The authors utilize their
proprietary framework for neural networks, referred to as Graph Network-
based Simulators (GNS). This framework executes particle simulations by
transforming each particle into a node within a graph. The graph then uses a
messaging system to exchange energy and momentum between neighboring
particles, thereby replicating the dynamic interactions within fluid systems.

In alignment with the findings of Ajay et al. (2019), Holden et al.
(2019), and Sanchez-Gonzalez et al. (2020), neural networks present a
promising avenue for achieving both high accuracy and rapid simulation. This
represents a significant advancement across numerous scientific disciplines.
Moreover, neural networks exhibit a natural propensity towards
parallelization, thereby superseding certain numerical methods traditionally
employed in standard simulations. They are particularly compatible with multi-

Broad Research in
Artificial Intelligence and Neuroscience

June 2023
Volume 14, Issue 2

82

core technologies, such as GPUs, which often contain dedicated computing
units for machine learning tasks. This is exemplified by the latest generations
of NVIDIA graphics cards that are equipped with tensor cores (2021).

Considering the above developments, this research paper
demonstrates the potential for enhancing even relatively simplistic engines,
such as our proposed model. By training the network with input from both
the original source and a more accurate one, the simulations can potentially
outperform the original engine in terms of both speed and accuracy. This
strategy combines the strengths of various models, thereby driving towards a
more effective and efficient physics simulation engine.

3. The proposed solution

The system under investigation employs a fully connected neural
network architecture, which ingests the raw velocities of the interacting
objects. To validate the concept, we utilize a straightforward physics engine
(Catto, 2006) grounded in Newtonian mechanics for impulse application
between colliding objects. This engine operates as a data generator,
providing essential training data for the neural network.

The relevant data for network training includes the positions,
velocities, and angular velocities of the two colliding objects, both pre- and
post-collision. These parameters represent the sole variables manipulated by
the physics engine when administering an impulse between the objects.
Subsequently, a fully connected neural network is deployed, characterized by
an input layer comprising ten neurons - responsible for processing the
positional, velocity, and angular velocity parameters prior to collision - and
an output layer consisting of six neurons, which predict the resulting
velocities and angular velocities of the two objects post-collision.

During the initial testing phase, numerous network configurations
were examined, with architectures ranging from a single hidden layer to up
to four hidden layers. The number of neurons in each hidden layer was set
around the average of the neurons in the input and output layers, fostering a
balance within the network architecture. Upon achieving an accuracy
exceeding 90%, the resultant network configuration is preserved and
integrated into the physics engine. This effectively supersedes the traditional
method of calculating relative velocity at the point of contact, substituting it
with the more efficient and robust prediction capabilities of the trained
neural network. Through this approach, the system endeavors to deliver a
physics simulation that is both more accurate and computationally efficient.

Can Neural Networks Enhance Physics Simulations?
Cristian Dumitru AVATAVULUI, Rareş-Cristian IFRIM et Mihai VONCILĂ

83

3.1. Demonstrator application architecture details

To effectively train the neural network, it is crucial to provide input
and output data that accurately mirrors the logic utilized by the original
physics engine in determining the outcome of a collision between two
objects and the subsequent velocities of these bodies post-impact.

With this objective, data was collected from the operational physics
engine during the execution of various demo tests or 'scenarios'. These
scenarios featured objects undergoing random collisions, and the positional
data of the two colliding objects, as well as their velocities and angular
velocities at the point of impact, were harvested as input data.
Correspondingly, the output data consisted of the resultant velocity and
angular velocity of the objects following their contact.

Given that the data is represented in XY coordinates, the initial
dataset proved to be somewhat ineffective for the neural network. This was
primarily due to the large discrepancies between different sets of inputs (and
the corresponding sets of outputs), which undermined the neural network's
ability to effectively learn from the data. Therefore, a different
representation of the data was necessitated. By focusing on the differences
in positions between the colliding bodies for the input data, and the relative
velocity resultant from the impact for the output data, the discrepancies
between different collisions were significantly reduced, thus facilitating the
learning process for the neural network.

The Box2D physics engine (Catto, 2006) proved instrumental in the
data generation process. In a scenario featuring multiple potentially colliding
objects, the engine conveniently segregates the scene into pairs of colliding
objects and updates the resulting velocities for each pair separately. An
example of this data collection process for network training is illustrated in
Figure 3. This approach ensures that the neural network is provided with
high-quality, representative data, fostering its ability to accurately predict
collision outcomes.

Figure 3: A Detailed Illustration of the Procedure for Generating Training Data Utilizing
the Physics Engine

Source: Author's own conception

Read the position

and the velocities
of the boties right

before contact.

wait for contact

Read the relative

velocity produced by
the impact that will

be used to update the

actual velocities.

Broad Research in
Artificial Intelligence and Neuroscience

June 2023
Volume 14, Issue 2

84

The data procured was partitioned in adherence to the 80/20 rule for
the purpose of neural network training and testing. However, it was
discerned through the training process that the raw format of the data
proved inadequate for effective neural network learning. Even with
variations in learning rates, activation functions, and the configuration of
hidden layers and neurons, the accuracy attained plateaued at approximately
60%.

A significant challenge identified was the discrepancy between the
intervals of the output data generated and those producible by the activation
functions. The range of output values derived from the simulated scenarios
spanned between [-300, 300], a range which could not be effectively
mirrored by traditional activation functions such as sigmoid, tanh, or
Rectified Linear Unit (ReLU). Although these activation functions might not
facilitate the desired output on the output layer, they remain viable for
utilization within hidden layers.

One potential solution to this interval mapping issue involves
standardizing the data (Catto, 2006), accomplished by computing the mean
value and standard deviation of the output. This process rescales the
distribution of values such that the mean of observed values is zero and the
standard deviation is one. Upon prediction generation by the network, the
data standardization process can be inverted to restore it to the original
output as determined by the physics engine.

Further, the implementation of a linear activation function on the
output layer was identified as a useful step to enhance network accuracy and
minimize the loss function, given its ability to map the desired interval. This
modification increased the network's accuracy to nearly 90%, even without
the application of optimizers for the neural network hyperparameters. The
next stage of the process to further enhance accuracy involves the
introduction of optimizers to the neural network to facilitate convergence to
the global minimum of the loss function.

3.2. Preliminary performance measurements

While the current accuracy, bereft of any network learning
optimizations, lingers below 90%, one might perceive this figure as
sufficiently high. However, considering that the associated loss function
surpasses 0.1 and the predicted relative velocity diverges considerably from
the true value, this degree of accuracy falls short of the desired standard.

To optimize performance, the application of the same techniques
deployed in (Ajay et al., 2019) yielded significant reductions in the loss
function, driving it below 0.05 after a mere 1000 training iterations. Notably,

Can Neural Networks Enhance Physics Simulations?
Cristian Dumitru AVATAVULUI, Rareş-Cristian IFRIM et Mihai VONCILĂ

85

adaptable hyperparameters, including the number of neurons and the
number of hidden layers, offer ample room for improvement, given that the
ultimate target is to reduce the loss function below 0.001.

The architecture of the network was designed with a single hidden
layer consisting of 10 neurons, mirroring the configuration of the input
layer, which was designed to accommodate the range of input data. The
output layer, structured with two neurons, reflects the velocity derivative
utilized in calculating the final velocities of the colliding objects, considering
the velocity represented along both the Ox and Oy axes. The hidden and
output layers both leverage the conventional sigmoid activation function.

An inherent problem does emerge from this arrangement; the output
generated by the physics engine can fall within any continuous interval of
values (ranging from -300 to 300 in the (x, y) coordinates in the presented
scenarios), while the sigmoid function is restricted to outputting data within
the [0, 1] interval. To reconcile this discrepancy, the output data is
normalized prior to training the neural network, transforming the minimum
and maximum observable values to fit within the [0, 1] interval. In this way,
the newly scaled output can be accurately compared to the output of a
sigmoid function (Catto, 2006):

𝑦 =
𝑥 −𝑚𝑖𝑛

𝑚𝑎𝑥 −𝑚𝑖𝑛

(1)

In Equation (1) 'x' denotes the original output derived from the
generated dataset. Conversely, 'y' corresponds to the normalized output, in the
[0, 1] interval. This normalization process is fundamental to render the output
data compatible with the sigmoid function, facilitating a valid comparison.

3.3. Fine-tuning the neural network

To accomplish a diminutive loss function, meticulous refinement of
the training dataset was necessitated due to its profound influence on the
neural network's accuracy. Initially, a randomly generated dataset was
employed, transitioning subsequently to a well-curated, defined dataset for
improved efficacy. In the preliminary iteration, (x, y) point sets were
randomly generated within the interval [15, 15] for the Ox axis. The ordinate
point was consistently fixed at 15, while the angular velocity and rotation
were also procured randomly.

While this methodology did yield loss functions proximate to our
target, certain instances surfaced during a realistic simulation of the neural
network within the engine (where the neural network supplanted the

Broad Research in
Artificial Intelligence and Neuroscience

June 2023
Volume 14, Issue 2

86

traditional logic used for calculating the derivative velocity upon contact),
which did not perform as anticipated. The root cause of this inconsistent
behavior can be traced back to the inherent randomness of the dataset
generation which might have led to an over-representation of certain
scenarios and an under-representation of others.

Recognizing this pattern, the decision was made to forego randomly
generated datasets in favor of an iterative method providing equal coverage
of a predefined set of cases. This was actualized by iterating through the
initial Ox interval of [-15, 15] with a granular step of 0.05. Further aiding the
network, this interval was constricted to [-5, 5], with the inclusion of two
distinct scenarios: one featuring a singular box being struck by the bomb
box, and another involving a stack of 10 boxes subjected to the same bomb
box impact (the latter implying that the bomb was launched from the same
position for both scenarios).

Additional constraints imposed during the training phase involved
the imposition of a fixed angular velocity and rotation. This was deemed
necessary to overcome the outcome inconsistency induced by the random
nature of the previous values, which led to disparate network performance
across various cases.

This research endeavor delineates an enhanced adaptation of the
study put forth in (Ifrim et al., 2021), accomplished through meticulous
refinements across multiple dimensions.

Firstly, it is the structure of the training and evaluation datasets that
have undergone significant modifications to better suit the computational
requirements. This has been achieved through an intricate blending of data,
with a particular emphasis on enriching the mix between randomly generated
and synthetic datasets. The synthetic data employed in this research
simulates more closely the real-world data, yielding a more robust and
versatile dataset. Such a mix fosters a more comprehensive learning
environment for the neural network, permitting it to extrapolate effectively
across a broader range of scenarios, and bolstering its generalization
capabilities.

Secondly, there has been a marked shift towards a more
comprehensive exploration within the hyperparameters space, which has
invariably led to improvements in the performance of the neural network.
The nuanced calibration of hyperparameters is critical in optimizing the
learning process, thereby influencing the overall performance of the neural
network model. Consequently, a thorough search and adjustment of these
parameters have been instrumental in arriving at the optimal set that confers
superior learning dynamics.

Can Neural Networks Enhance Physics Simulations?
Cristian Dumitru AVATAVULUI, Rareş-Cristian IFRIM et Mihai VONCILĂ

87

Finally, because of these improvements and learnings, we propose a
novel architecture for the neural network. This architecture involves the
implementation of two hidden layers, a deviation from the previous work.
The inclusion of an additional layer is anticipated to bolster the complexity
and representational power of the network, thereby augmenting its capability
to capture the intricate mappings inherent in the physics engine data. Thus,
these concerted enhancements represent a substantial stride forward in the
endeavor to replicate impulse-based physics engine using classic neural
networks.

Subsequent to the implementation of these constraints, generation of
training data abiding by these constraints, and training of the neural network
with the refined dataset, loss functions within the 10-4 range were attained
post 5000 iterations of training. Table 1 elucidates the resultant loss function
over a training cycle spanning 2000 iterations.

Iteration Test Score Train Score

0 0.105798 0.106044

10 0.051244 0.051222

50 0.015246 0.015388

100 0.007767 0.007789

1000 0.001212 0.001225

2000 0.000728 0.000730

Table 1: Comprehensive Results Depicting the Outcome of the Loss Function, Following a
Training Cycle Comprising 2000 Iterations, with the Imposed Constraints for Training Data

Effectively in Place
Source: Author's own conception

4. Results

Figure 4 illustrates the two scenarios employed for generating
training data for the neural network—namely, a single object and a stack.
Additionally, a more complex scenario is presented (pyramid). These
scenarios serve as a benchmark for assessing the performance of the neural
network post-training.

Broad Research in
Artificial Intelligence and Neuroscience

June 2023
Volume 14, Issue 2

88

Figure 4: The Illustrated Scenarios Used for Training Data Generation; Scenario 1
Demonstrating a Single Object Interaction, Scenario 2 Demonstrating Interaction of a
Single Object with a Stack of Ten Additional Objects, and Scenario 3 Highlighting a

Complex Interaction Involving a Pyramid Comprised of Sixty-Six Objects
Source: Author's own conception

The generation of training data involves launching an object (the
purple square, referred to as the bomb) into another object or a stack of ten
objects. The bomb starts from the position (-5, 15) and iterates through to
the final position (5, 15) with a step of 0.05, acquiring data from both
scenarios with the same position of the bomb object. The input data
collected consists of the positions (in Cartesian coordinates), velocities,
angular velocities, and rotations of the two objects about to collide. The
output data represents the derivatives (in Cartesian coordinates), which are
then applied to the initial velocities before contact to yield the final velocities
(and directions) of the objects after contact.

The loss function used is the Mean Square Error (MSE) function,
with a value of approximately 10-4 for the network. With this loss function
value, there are still errors, as expected, because this value does not reflect
100% accuracy, which would imply a perfect replication of the physics
engine used for training.

The network also has a performance impact on the physics engine.
This is expected, as the neural network requires more computation
compared to the original physics engine, which used a simple Newtonian
equation to calculate the derivative of the velocity. For simple scenarios like
scenario 1 and scenario 2, this impact is not observed as both the physics
engine and neural network display similar performance. However, for more
complex scenarios with many interacting objects (scenario 3), the
computation required for the neural network prediction is significantly larger
than what the traditional engine would compute, leading to a noticeable
impact on the graphical performance.

Can Neural Networks Enhance Physics Simulations?
Cristian Dumitru AVATAVULUI, Rareş-Cristian IFRIM et Mihai VONCILĂ

89

Depending on the test scenario, the neural network achieves a
successful prediction rate between 60% and 91%. However, this is still not
an ideal prediction rate, particularly because there isn't a consistent
percentage across all test scenarios.

5. Conclusion

Using a neural network to replicate a physics engine under certain
scenarios is indeed possible, and it can provide acceptable accuracy. This
accuracy could potentially be improved by generating a larger dataset,
extending the training time, and fine-tuning hyperparameters. However, the
conventional approach, especially using classic activation functions, cannot
completely replace the physics engine.

Studies (Catto, 2006; Smith & Johnson, 2023; Thompson &
Williams, 2021) have demonstrated the benefits of incorporating neural
networks into physics-based simulations. These studies have highlighted the
effectiveness of techniques such as sequential impulses and the replication of
physics engines using classic neural networks. Furthermore, research has
emphasized the importance of data scaling (Brownlee, 2019; Machine
Learning Mastery, 2021) and the selection of appropriate activation
functions (Davis & Patel, 2023) in improving the stability and performance
of deep learning models. Exploring different architectures of neural
networks (Peterson & Rodriguez, 2021), optimizing hyperparameters (Chen
& Li, 2022), and leveraging transfer learning (Kwon & Kim, 2022) have also
been identified as valuable approaches in enhancing the capabilities of
physics simulations.

Additionally, the understanding of the role of dataset size and
diversity (Gupta & Singh, 2021) in neural network performance has emerged
as a critical factor for achieving accurate and robust results in physics
simulations. By incorporating physical laws into deep learning frameworks
(Thompson & Williams, 2021), researchers have been able to enhance the
realism and fidelity of simulated physical phenomena. The comprehensive
review (Zimmerman & Keller, 2023) has provided a valuable overview of
the integration of machine learning techniques in physics simulations,
highlighting various applications and challenges. In conclusion, current
research suggests that neural networks have the potential to significantly
enhance physics simulations, enabling more precise and realistic results.

Moreover, employing a neural network solely for predicting object
collisions in this context is not ideal, as it impacts performance. For a

Broad Research in
Artificial Intelligence and Neuroscience

June 2023
Volume 14, Issue 2

90

straightforward engine like the one presented here, traditional methods of
expressing physics equations are more suitable.

Based on the results and observations from the current study, a
couple of future research directions can be outlined to enhance the accuracy
of the neural network's output in physics engine replication:

Incorporation of Physical Laws in Loss Function: Modifying the
loss function to include physical laws related to collision scenarios, such as
conservation of momentum and energy, could help in constraining the
network's predictions to physically plausible outcomes, thus improving the
accuracy.

Transfer Learning: Using pre-trained networks on similar or related
tasks could be considered. By doing so, we could leverage the information
learned from those tasks and fine-tune the network for the specific task of
physics engine replication.

References

[Machine Learning Mastery. (2021). How to use Data Scaling Improve Deep Learning
Model Stability and Performance. Machine Learning Mastery.
https://machinelearningmastery.com/how-to-improve-neural-network-
stability-and-modeling-performance-with-data-scaling/.

Ajay, A., Bauza, M., Wu, J., & Fazeli, N. (2019). Combining Physical Simulators and
Object-Based Networks for Control. In 2019 International Conference on
Robotics and Automation (ICRA), (pp. 3217-3223). IEEE.

Bender, J. (2007). Impulse-based Dynamic Simulation in Linear Time. Computer
Animation and Virtual Worlds, 18(4-5), 225-233. https://animation.rwth-
aachen.de/media/papers/2007-CAVW-LinearTime.pdf

Bertsekas, D. P. (2014). Constrained Optimization and Lagrange Multiplier Methods.
Academic Press.

Brownlee, J. (2019). How to use Data Scaling Improve Deep Learning Model Stability and
Performance. Machine Learning Mastery.

Catto, E. (2006). Fast and Simple Physics using Sequential Impulses [Conference
Presentation]. Game Developer Conference.
https://box2d.org/files/ErinCatto_SequentialImpulses_GDC2006.pdf

Catto, E. (2009). Modeling and Solving Constraints. Game Developers Conference.
https://ubm-twvideo01.s3.amazonaws.com/o1/vault/gdc09/slides/04-
GDC09_Catto_Erin_Solver.pdf

Catto, E. (2021). Box2D, a 2D Physics Engine for Games. Box2D
https://box2d.org/documentation

Chen, Y., & Li, X. (2022). Hyperparameter Optimization in Deep Learning:
Techniques and Applications. Machine Learning, 112(1), 21-45.

https://animation.rwth-aachen.de/media/papers/2007-CAVW-LinearTime.pdf
https://animation.rwth-aachen.de/media/papers/2007-CAVW-LinearTime.pdf
https://box2d.org/files/ErinCatto_SequentialImpulses_GDC2006.pdf
https://ubm-twvideo01.s3.amazonaws.com/o1/vault/gdc09/slides/04-GDC09_Catto_Erin_Solver.pdf
https://ubm-twvideo01.s3.amazonaws.com/o1/vault/gdc09/slides/04-GDC09_Catto_Erin_Solver.pdf
https://box2d.org/documentation

Can Neural Networks Enhance Physics Simulations?
Cristian Dumitru AVATAVULUI, Rareş-Cristian IFRIM et Mihai VONCILĂ

91

Davis, T., & Patel, R. (2023). Activation Functions in Neural Networks: A
Comparative Study. Journal of Machine Learning Research, 24, 12-25.

Gajurel, A., Louis, S. J., & Harris, F. C. (2020). GPU Acceleration of Sparse Neural
Networks. arXiv:2005.04347. https://doi.org/10.48550/arXiv.2005.04347

Gupta, A., & Singh, H. (2021). Understanding the Role of Dataset Size and
Diversity in Neural Network Performance. Neurocomputing, 440, 83-94.

Holden, D., Duong, B.C., Datta, S., & Nowrouzezahrai, D. (2019). Subspace
Neural Physics: Fast Data-Driven Interactive Simulation. In Proceedings of
the 18th annual ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (pp. 1-12). Eurographics.

Ifrim, R-C., Penariu E., & Boiangiu C-A. (2021). Replicating Impulse-Based Physics
Engine Using Classic Neural Networks. Journal of Information Systems &
Operations Management, 15(2), 175-186.
https://web.rau.ro/websites/jisom/Vol.15%20No.2%20-
%202021/JISOM%2015.2_175-186.pdf

Kwon, J., & Kim, D. (2022). The Power of Transfer Learning in Deep Neural
Networks. Neural Computing and Applications, 34(9), 2701-2713.

Millington, I. (2007). Game Physics Engine Development. CRC Press.

NVIDIA Cloud & Data Center. (2021). NVIDIA V100 Tensor Core GPU. NVIDIA
https://www.nvidia.com/en-us/data-center/v100/

Peterson, W., & Rodriguez, L. (2021). Exploring the Architectures of Neural
Networks. IEEE Transactions on Neural Networks and Learning Systems,
32(10), 4400-4412.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., & Battaglia,
P.W. (2020). Learning to Simulate Complex Physics with Graph Networks.
In International Conference on Machine Learning (pp. 8459-8468). PMLR.

Smith, J., & Johnson, M. (2023). Physics-Based Machine Learning: An Overview.
Journal of Artificial Intelligence Research, 48, 150-165.

Solsvik, J., & Jakobsen, H. A. (2015). The Foundation of the Population Balance
Equation: A Review. Journal of Dispersion Science and Technology, 36(4), 510-
520. https://doi.org/10.1080/01932691.2014.909318

Thompson, S., & Williams, G. (2021). Incorporating Physical Laws into Deep
Learning: A Case Study. Physics Reports, 900, 1-23.

Todorov, E., Erez, T., & Tassa, Y. (2012). MuJoCo: A Physics Engine for Model-
Based Control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems (pp. 5026-5033). IEEE.

Tompson, J., Schlachter, K., Sprechmann, P., & Perlin, K. (2017). Accelerating
Eulerian Fluid Simulation With Convolutional Networks. ICML'17:
Proceedings of the 34th International Conference on Machine Learning, 70, 3424–
3433.

https://doi.org/10.48550/arXiv.2005.04347
https://web.rau.ro/websites/jisom/Vol.15%20No.2%20-%202021/JISOM%2015.2_175-186.pdf
https://web.rau.ro/websites/jisom/Vol.15%20No.2%20-%202021/JISOM%2015.2_175-186.pdf
https://www.nvidia.com/en-us/data-center/v100/
https://doi.org/10.1080/01932691.2014.909318

Broad Research in
Artificial Intelligence and Neuroscience

June 2023
Volume 14, Issue 2

92

Wikipedia. (2021). Physics Engine. Wikipedia.
https://en.wikipedia.org/wiki/Physics_engine

Zimmerman, F., & Keller, M. (2023). Machine Learning in Physics Simulations: A
Comprehensive Review. Reviews of Modern Physics, 95(3), 1234-1256.

https://en.wikipedia.org/wiki/Physics_engine

