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Abstract: Glioblastoma Multiforme (GBM) is a highly aggressive 
brain tumor originating from glial cells that is a subset of higher-grade 
gliomas (HGG). Given the extreme malignancy of GBM and HGG, 
radiotherapy is often used to shrink tumor and inhibit tumor cell 
function. Despite the use of radiotherapy, GBM recurrence rates remain 
high, and complications, such as radiation necrosis, can arise. Recurrent 
GBM and radiation necrosis are nearly indistinguishable using current 
imaging techniques, which is a considerable challenge in management of 
GBM treatment. Radiation necrosis is treated conservatively using 
corticosteroids while recurrent GBM requires aggressive treatments given 
its markedly short prognosis. Currently, invasive biopsy is the only 
available method for accurate differentiation of recurrent GBM from 
radiation necrosis. Clearly, noninvasive differentiation techniques are 
imperative to effective clinical decision-making surrounding GBM 
treatment. Many studies have attempted to use conventional MRI, 
advanced MRI parameters, modalities, and techniques, and machine 
learning methods to solve this crucial problem. In this review, we attempt 
to overview the difficulty of differential diagnosis and analyze the current 
state of knowledge on image-based differentiation approaches utilizing 
MRI. We identify major gaps in the research and make suggestions to 
improve current tactics and direct future investigations. 
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Background & Introduction 

High-grade glioma (HGG) are grade III and IV brain tumors of glial 
cells, as classified by World Health Organization (WHO) standards. WHO 
also classifies a subset of HGG known as glioblastoma multiforme (GBM), 
which refers to highly malignant grade IV brain tumors. Generally, GBM is 
considered one of the deadliest forms of brain cancer, with median survival 
of just 15 months. The leading treatment management options for GBM are 
total resection, chemotherapy, and radiotherapy. While the use of 
radiotherapy can increase prognosis, complications such as radiation 
necrosis may arise. Radiation necrosis causes healthy tissues to die as a result 
of high doses of irradiation. A key issue in the field of neuro-oncology is that 
recurrence of GBM and radiation necrosis appear nearly identical using 
conventional imaging. Invasive obtainment of tissue specimens is the only 
reliable method of differentiating between recurrent GBM and radiation 
necrosis.  For the purpose of noninvasive differentiation, two main 
approaches have emerged: advanced imaging techniques and automated 
predictive modeling. While there have been reviews strictly discussing the 
use of advanced imaging techniques, few have performed an overarching 
analysis of computerized methods. In this comprehensive review, we will 
first go over the problem with more contextualization and depth. Next, we 
review studies experimenting with different imaging techniques for the 
purpose of differentiation. Finally, we evaluate predictive models and make 
suggestions for the direction of future research. Within this assessment, we 
only focus on approaches incorporating Magnetic Resonance Imaging (MRI) 
given its prevalence in this field of study. 

Difficulties in Differentiation of Recurrent GBM and Radiation 
Necrosis 

Park et al. explain that, while the gold standard treatment option for 
GBM is tumor resection, certain factors such as age and Karnofsky 
Performance Status (KPS) can drive radiotherapies like External Beam 
Radiation Therapy (XRT) and Stereotactic Radiosurgery (SRS), which are 
commonly used to treat brain metastases such as glioma or GBM, to 
become standard of care (2021). Studies have shown that the use of 
radiotherapies could confer prognostic benefits, making it an attractive 
treatment option to qualified patients. For example, Binello et al. suggest 
that when XRT is followed by the use of SRS, it could confer a more 
favorable prognosis to patients suffering from HGG (2015). These findings 
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clarify that the use of XRT and SRS to treat gliomas can hold certain 
advantages for patients. While prognosis may improve, however, the 
introduction of radiotherapies can risk complications that could affect 
course of treatment and quality of life for patients.  

One of the most common effects of radiotherapy is the onset of 
radiation necrosis. Typically, three years after the use of radiotherapies, 
radiation necrosis can begin to develop (Park et al., 2021). Due to lack of 
experimental data and imaging, there are few studies quantifying exact 
incidence of radiation necrosis, however the existing body of knowledge still 
provides us with valuable insights. For instance, the longitudinal study 
performed by Sarkaria et al observed 115 patients who underwent SRS as 
treatment for an HGG (1995). Among other major findings, the study 
revealed that out of the 115 patients surveyed, 19 experienced complications 
as a result of SRS. 17 of these 19 patients (90%) were diagnosed with 
radiation necrosis, corresponding to 14.78% of the total patient population. 
Chao et al. explain that with the increasing usage of radiotherapies and SRS, 
cases of radiation necrosis have grown. There also exist significant 
challenges with diagnosis of radiation necrosis and differentiation recurrent 
GBM using current imaging methods. In fact, using conventional imaging, 
such as T1 or T2-weighted Magnetic Resonance Imaging (MRI), recurrent 
GBM is almost indistinguishable from radiation necrosis. Currently, the only 
reliable method of differentiation between tumor progression and 
pseudoprogression is biopsy (2013). Radiation necrosis is often treated 
conservatively with corticosteroids to reduce inflammatory signaling. 
Patients generally see major improvement once steroids enter into the 
system (Tamini & Juweid, 2017). The treatment of recurrent GBM, however, 
requires the aggressive use of chemotherapy, immunotherapy, or other anti-
cancer practices (Park et al, 2021; van Linde et al., 2017). Given the 
ambiguity in  accurate classification and the differences in treatment between 
the two pathologies, finding noninvasive tactics of differential diagnosis has 
massive implications in clinical workflows. 

Raimbault et al. concluded that the areas of the brain where 
maximum radiation doses had been exposed to patients during radiotherapy 
were more susceptible to the onset of radiation necrosis. More specifically, 
white matter surrounding tumor sites, where blood supply is often limited, 
were most vulnerable to the formation of necrotic tissue (2014). Because 
90% of GBM recur locally within a couple years (Minniti et al., 2021) and 
radiation necrosis typically develops at sites of maximal radiation dose where 
original tumors are located, differentiation of the two pathologies becomes 
even more complicated. To illustrate the difficulty in distinguishing recurrent 
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tumors and radiation necrosis, almost no differences were noted in MRI of 
recurrent GBM and radiation necrosis, Raimbault et al. observed marked 
similarity between the two pathologies with respect to visual progression and 
contrast enhancement (2014).  

Advanced Magnetic Resonance Imaging Differentiation Approaches 

In response to this critical issue, many studies have searched for 
imaging-based solutions. With respect to neuroimaging and imaging of 
recurrent GBM, both MRI and computed tomography (CT) are the most 
widely used, however given the multimodality and anatomical detailing of 
MRI, it is the most preferred imaging method (Pope & Brandal, 2018). 
Hence, this review will focus mainly on MR-based imaging solution. Other 
imaging techniques, such as PET scans, have been employed in similar 
contexts, however such studies fall out of the scope of this review. Mullins 
et al. conducted one of the foremost clinical studies attempting 
differentiation through conventional imaging methods. For this study, T1 
and T2-weighted axial MRI and T1-weighted post-gadolinium MRIs were 
used for 27 patients who had undergone proton beam radiation therapy 
(PBRT) to treat HGG. Each patient image was blind reviewed by two 
neuroradiologists and classified as either radiation necrosis or recurrent 
GBM. Mullins et al. performed meta-analysis with the goal of identifying 
patterns of diagnosis based on imaging signs, such as involvement with the 
corpus callosum or subependymal spread. Results of differential diagnosis 
with individual imaging signs was largely insignificant, however, when two or 
three imaging signs were combined, results became more encouraging. For 
instance, there was significant discrimination towards tumor recurrence with 
images involving the corpus callosum, crossing of the midline, and discrete 
multiple enhancing foci (MEF) (Mullins et al., 2005). These results suggest 
that while differentiation using just one imaging sign in standard MRI is not 
clinically applicable, the pairing of conventional and advanced techniques 
may be more effective. 

Advanced MR sequences and parameters were used by Feng et al., 
who performed a comprehensive longitudinal study that enrolled 112 
patients. Standard T1 and T2-weighted axial MRI, enhanced T1 and T2-
weighted axial MRI, and fluid attenuated inversion recovery (FLAIR) 
sequences were acquired for the purpose of the study. Diffusion-weighted 
imaging (DWI), diffusion tensor imaging (DTI), dynamic susceptibility 
contrast perfusion-weighted imaging (DSC-PWI), and proton MR 
spectroscopy (H-MRS) were obtained after routine sequence acquisition 
(Feng et al., 2021). The results procured by Feng et al. shed light on the use 
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of advanced MR sequences for the purpose of discriminating radiation 
necrosis and GBM. Diffusion data demonstrated that lower apparent 
diffusion coefficient (ADC) value and relative ADC (rADC) values 
significantly favored radiation necrosis. Lower values of axial diffusion 
coefficient (DA) and radial diffusion coefficient (DR) from DTI 
corresponded to bias towards tumor recurrence. Significantly higher relative 
cerebral blood volume and flow (rCBV and rCBF) from DSC-PWI favored 
tumor recurrence. Spectral metabolite ratios from H-MRS exhibited 
propensity towards tumor recurrence with significantly higher CHO/NAA 
and LAC/Cr ratios and significantly lower Lip/Cr ratios (Feng et al., 2021). 
Altogether, Feng et al’s study shows that advanced MR imaging techniques 
may ultimately be a viable solution to differentiation efforts. While 
conventional imaging may not provide enough context for differential 
diagnoses, an adoption of the recommendation made by Mullins et al. to 
combine conventional and advanced MR could become advantageous. Table 
1 summarizes key findings of MRI-based approaches to differential 
diagnosis. 

 
Table 1. Features of Different MRI Types with Significant Bias Towards Tumor 

Recurrence or Radiation Necrosis 

Imaging 
Type 

Study (# of 
patients) 

Qualitative Findings 

Conventional 
MRI 

Mullins et 
al.     (n = 
27) 

-Individual imaging signs yielded statistically 
insignificant differentiation 

- Significant bias towards recurrent tumor with 
combination of corpus callosum and MEF 

-Significant bias towards recurrent tumor with 
combination of corpus callosum, crossing of 
midline, and MEF 

-Significant bias towards recurrent towards with 
involvement of corpus callosum, subependymal 
spread, and MEF 

DWI Feng et al           
(n = 112) 

-Significantly lower ADC and rADC values favor 
diagnosis of radiation necrosis 

DTI Feng et al           
(n = 112) 

-Significantly lower DA and DR values favor tumor 
recurrence 
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DSC-PWI Feng et al           
(n = 112) 

-Significantly higher rCBV and rCBF favor tumor 
recurrence 

H-MRS Feng et al           
(n = 112) 

-Significantly higher CHO/NAA ratio favors tumor 
recurrence 

-Significantly higher Lac/Cr ratio favors tumor 
recurrence 

-Significantly higher Lip/Cr ratio favors radiation 
necrosis 

Source: Authors' own conception 

Fully Automated Predictive Differential Approaches 

Radiomics-Based Approach 

While the traditional approach to differentiation has been to use 
advanced imaging to facilitate increased accuracy in diagnosis by radiological 
experts, other studies have explored fully automated pipelines using artificial 
intelligence and machine learning. The most prominent form of automation 
has been the use of radiomic features. Radiomics refers to tumor and 
imaging characteristics discernible to computerized feature extractors, such 
as gray level, intensity, texture, shape, etc. Park et al. designed a machine 
learning based predictive model to differentiate recurrent GBM and 
radiation necrosis using conventional and diffusion-weighted MRI (Park et 
al., 2021). Qualitative imaging analysis performed by radiologists largely 
rejected traditional findings of Mullins et al. (2005) which asserted that 
imaging signs such as involvement of corpus callosum and spreading 
wavefront in new discrete multiple enhancing foci could indicate differential 
diagnoses. As for the predictive model, Park et al. utilized a radiomics-based 
strategy by extracting 14 shape features and 83 first-order and second-order 
feature parameters for three different MRI sequences. Three tradition 
classification models, k-nearest neighbors (KNN), support vector machine 
(SVM), and AdaBoost, were implemented with 86 patient imaging samples, 
63 classified as recurrent GBM and 23 as radiation necrosis. The least 
absolute shrinkage and selection operator (LASSO) was used to define 
radiomic feature importance. Park et al found that support vector machine 
utilizing 18 selected features of DWI was the best differentiator of recurrent 
GBM and radiation necrosis. The model had an AUC score of 0.80 (on a 0.0 
to 1.0 scale) and an accuracy of 78% using an independent testing set. The 
model also achieved 66.7% sensitivity and 87% specific (Park et al., 2021).  
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Q. Zhang et al. performed radiomic differentiation utilizing a logistic 
regression model with a 51-patient sample (35 glioma patients, 16 radiation 
necrosis patients). 41,284 handcrafted features and 24,576 deep features 
were extracted using two pre-trained models, AlexNet and Inception v3. A 
0.632 bootstrap estimator was used to select important Q. Zhang et al. 
found that the highest performing model in validation used the AlexNet 
feature extractor; the mean evaluation metrics for the model are as follows: 
0.9993 AUC score, 98.33% accuracy, 99.94% sensitivity, and 98.01% 
specificity. Q. Zhang et al. also found that multimodal MRI had more 
predictive capability than single-modality MRI (Zhang et al., 2017). While 
the results of this study were promising for differentiation efforts, the 
patient sample utilized was small. One of the major gaps in efforts to 
differentiate recurrent GBM and radiation necrosis is a more comprehensive 
study performing radiomic classification with a larger and more balanced 
patient population. 

Z. Zhang et al. also constructed a predictive differentiation model 
using a sample of 87 retrospectively identified patient imaging sets, 73 
lesions diagnosed as tumor progression and 24 as radiation necrosis. 
Decision trees, discriminant analysis, KNN, SVM, and ensemble classifiers 
were utilized as classifiers with only conventional MRI used as input. 
Because of the lack of available imaging data, leave-one-out cross validation 
was used to augment testing performance. 285 radiomic features were 
extracted for each patient imaging set; these features belonged to six 
categories: direct intensity and intensity histograms, gray level co-occurrence 
matrices, gray level run length matrices, geometric shape features, 
neighborhood gray-tone difference matrices, and histograms of oriented 
gradients (Zang et al., 2017). In addition to traditional shape feature 
extraction, a novelty of Zhang et al’s predictive model was the use of delta 
radiomics in the context of differentiation (2017). Delta radiomics account 
for the nature of disease progression in recurrent GBM and radiation 
necrosis by calculating the difference in radiomic feature values over time. 
The RusBoost ensemble classifier was observed as the best predictor of 
differential diagnosis; this model yielded an AUC score of 0.73 and was 
73.2% accurate. Another major finding was that delta radiomic features were 
more valuable in prediction than traditional radiomics (Zang et al., 2017). 
While Z. Zhang et al’s model performance was less successful in 
differentiation than other studies, such as Park et al’s, these differences may 
come down to data imbalance. Park et al initially utilized a dataset containing 
a recurrent GBM to radiation necrosis incidence ratio of 63:23, however, 
using the synthetic minority (Chawla et al., 2002) oversampling technique 
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(SMOTE), the data was balanced to a 1:1 ratio (Park et al., 2021). Despite 
the fact that the dataset used by Z. Zhang et al. (2017) contained even more 
imbalance (73:24), no such techniques were used. This emphasizes the need 
for more data acquisition; a large and balanced patient cohort could 
ultimately enhance radiomic predictor performance. Another important 
takeaway from Z. Zhang et al. was the use of delta radiomics to track 
potential progressive differences between the two pathologies. Although 
Raimbault et al. find that differences between recurrent GBM and radiation 
necrosis with respect to visual progression are almost imperceptible (2014), 
it is still important that future efforts involving predictive radiomic models 
attempt to take advantage of potential differences between tumor and 
pseudoprogression as such studies are currently lacking (Chung et al., 2018). 
Refer to Table 2 for summary of radiomic predictor information and 
evaluation metrics. 

 
Table 2. Summary of Model Evaluation Metrics for Studies Involving Radiomic 

Approaches 

Study Initial Tumor 
Recurrence: 
Radiation 
Necrosis 

AUC 
Score 

(0.0-1.0) 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Park et al. 63:23 0.80 78.0 66.7 87.0 

Q. Zhang 
et al. 

35:16 1.00 98.3 99.9 98.0 

Z. Zhang 
et al. 

73:24 0.73 73.2 N/A N/A 

Source: Authors' own conception 

Connectomics-Based Approach 

Another computerized technique, which has been so far 
underutilized in studies involving glioma, is connectomics. A connectome 
refers to a map represented brain networks; this incorporates both neurons 
and connectivity between these neurons. Connectomes are often 
represented using graph theory as neurons, represented as nodes, and 
regional connections as edges (Hwang et al., 2012). Functional MRI (fMRI), 
which tracks brain activity using blood flow patterns, is used to create the 
functional connectome, a map that represents the complex neural dynamics 
in the brain. Many studies have established that focal tumor, such as gliomas, 
experience alterations in functional connectivity. The study conducted by 
Derks et al. was one of the largest to construct functional connectomes and 
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explore patterns of functional connectivity using imaging of gliomas (2017). 
Derks et al. performed connectomic profiling with the goal of identifying 
connectivity patterns that could be used as biomarkers in glioma (2013). 
Hwang et al. first defined the hub architecture in function brain networks 
(2012). They defined hubs as regions facilitating functional connectivities 
and identified hub-non-hub connections termed “spokes” (Hwang, 2012).  It 
was found by Derks et al. that glioma patients were observed with an 
increase in spoke connections, and analysis of glioma patient groups showed 
that spoke connectivity differed based on factors such as KPS, tumor grade, 
and progression free survival (2017). While the field of connectomics is 
relatively unknown and underused in the context of glioma, studies 
identifying differences in connectivity patterns between radiation necrosis 
and recurrent GBM could be an alternative to current imaging and 
radiomics-based approaches. Still, there are considerations that could affect 
the viability of using a functional connectome. For instance, fMRI, which is 
required for functional connectome construction requires sizeable 
infrastructure and administrative constraints that may impede on its 
accessibility to patients (Sakai, 2022). 

Even if fMRI is not viable for the purpose of differentiation, 
alternative connectomics-based approaches using conventional MRI may 
also have potential. One of the largest applications of radiomics is the 
classification of genetic factors, such a IDH mutations or 1p/19q 
codeletions, in diffuse gliomas. However, Kesler et al. proposed an 
alternative method, the use of structural connectomes from conventional 
MRI as predictors of IDH mutation (2017). Kesler et al created gray matter 
covariance networks using voxel-based morphometry (VBM) and the 
diffeomorphic anatomical registration through exponentiated lie algebra 
(DARTEL) for sample normalization. Nodal, or local, efficiency values were 
extracted for 90 discrete regions from the automated anatomical labeling 
(AAL) scheme and network size (number of neurons), network degree 
(number of neuronal connections), and brain volume were computed 
(Kesler et al., 2019). From the study’s results, connectome-based prediction 
was largely successful, and similar approaches should be investigated 
considering the absence of studies utilizing connectomic methods in 
differentiation of recurrent GBM and radiation necrosis. This approach 
could be largely successful considering only standard MRI would be needed. 
One tradeoff, however, may be the computational expense of connectome 
construction methods such as DARTEL, which requires significant 
processing time, power, and memory that surpasses the scope of most 
clinical frameworks (Valero-Lara, 2014). 
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Conclusion 

The ability to noninvasively and effectively differentiate between 
recurrent GBM and radiation necrosis is essential to the successful 
management of GBM therapies. Given that recurrent GBM has median 
survival of less than one year and the potential complications of invasive 
biopsies, high performing non-invasive differential diagnosis could allow for 
appropriate treatment course to start immediately. This could ultimately 
deter the effects of recurrent GBM progression, possibly prolonging 
survival, increasing survival rate, and improving quality of life. One of the 
major gaps in the existing literature is a lack of available imaging data for the 
purpose of differentiation. Given the high dependency of computerized 
methods on large volumes of data for highly reliable classification, more data 
acquisition efforts are needed. Advanced imaging approaches show that 
conventional MRI alone is not enough for differential diagnosis, however 
the use of image sign combinations, multimodal MRI, and multiparametric 
MRI shows potential. From the body of knowledge on radiomic approaches, 
it is important that studies incorporate balancing techniques such as 
SMOTE in order to decrease bias in differentiation. Furthermore, more 
studies should incorporate delta radiomics (Nardone et al., 2021) to take into 
consideration longitudinal impacts of recurrent GBM and radiation necrosis 
progression. Perhaps the largest gap in the current literature is the use of 
connectomics for differentiation. Both functional and structural connectivity 
patterns could reveal significant pathological differences that have yet to be 
explored. 
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