Pricing in Multi-Heston Framework (I). Riccati equations

Tiberiu Socaciu
Stefan cel Mare University of Suceava, Faculty of Economics and Public Administration, Romania
tibisocaciu@yahoo.com

Abstract
This article presents the ultimate in resolving a pricing framework's multi-Heston. Basically, we use the theorem Carr-Bakshi-Madan and a characteristic function method. In this first part, we integrate solutions of Riccati equations.

Keywords: Riccati ODE, Multi-Heston framework, financial derivatives, Carr-Bakshi-Madan theorem

1. Introduction
As an extension of Black-Scholes model (Black & Scholes, 1973), Steven and Heston (1993) define a new model with a stochastic volatility. This model was extant by Christoffersen, Heston and Jacobs (2009) as a model with two stochastic semi-volatilities. In our opinion, this model can be generalized as a stochastic model with q (q>0) stochastic partial-(or semi-) volatilities, see equation (1):

\[dS = \mu_i S \, dt + \sum_{j=1,q} v_j^{0.5} S \, dW_j \]

\[dv_j = \theta_j (\omega_j - v_j) \, dt + \xi_j v_j^{0.5} \, dB_j, \quad j=1,q, \quad \text{and} \]

where:
1. \(\omega_j \) is long term j-th partial-volatility, \(j=1,q \);
2. \(\theta_j \) return factor to mean of j-th partial-volatility, \(j=1,q \);
3. \(\xi_j \) volatility of j-th volatility, \(j=1,q \);
4. \(B_j \) and \(W_j \) are Wiener standard processes correlated (\(\delta_{ij} \) is Kronecker symbol):

\[dW_j dB_j = \rho_{ij} \, \delta_{ij}, \quad j=1,q, \quad i=1,q; \]

5. \(S \) is a stochastic process for a traded asset;
6. \(v_j \) is j-th partial-volatility, \(j=1,q \).

This paper is based on a draft (Socaciu, 2015). All of proofs can be obtained in extended form there.

2. Riccati equations integration
Lemma R1. For next linear ODE:

\[\frac{dZ(x)}{dx} = A \, Z(x) + B, \]

where \(A \) and \(B \) are constants, solution is:

\[Z = -B \, A^{-1} + K \, \exp(Ax), \]

where \(K \) is an integration constant.

Proof. Multiply ODE with \(\exp(-Ax) \).
Lemma R2. For Riccati ODE:

\[
dZ(x)/dx = a Z^2(x) + b Z(x) + c, \quad (5)
\]

where \(Z\) is nonnegative and:

\[
Z(0) = 0, \quad (6)
\]

with \(a\), \(b\) and \(c\) constants, we have:

\[
Z = 0.5 \left[b \pm D \right] \left[E - 1 \right] \left[1 - G E \right]^{-1} a^{-1}, \quad (7)
\]

where:

\[
D = \left[b^2 + 4 a c \right]^{0.5}, \quad (8),
\]

\[
G = - \left[b \pm D \right] \left[- b \pm D \right]^{-1}, \quad (9)
\]

\[
E = \exp(- \pm D x). \quad (10)
\]

Proof. After changing:

\[
Y = (Z - z)^{-1}, \quad (11)
\]

ODE becomes:

\[
-Y' Y^2 = a \left[z^2 + 2 z Y + Y^2 \right] + b \left[z + Y \right] + c, \quad (12)
\]

or:

\[
Y' = - \left[a z^2 + b z + c \right] Y^2 - \left[b + 2 a z \right] Y - a. \quad (13)
\]

If:

\[
z = 0.5 \left[- b \pm D \right] a^{-1}, \quad (14)
\]

then:

\[
a z^2 + b z + c = 0, \quad (15)
\]

and Riccati ODE becomes:

\[
Y' = - D Y - a. \quad (16)
\]

and now apply Lemma R1:

\[
Z(x) = 0.5 \left[- b \pm D \right] a^{-1} - \left[\pm a D^{-1} - KE \right]^{-1}, \quad (17)
\]

Because:

\[
Z(0) = 0 = 0.5 \left[- b \pm D \right] a^{-1} - \left[\pm a D^{-1} - K \right]^{-1}, \quad (18)
\]

then:
Observation. The two solutions of Riccati ODE are identical.

Proof: Let:

\[E_+ = \exp(-D t), \]
\[G_+ = -[b + D][-b + D]^{-1}, \]
\[E_- = \exp(+D t) = 1 / E_+, \]
\[G_- = -[b - D][-b - D]^{-1}, \]

then solutions are:

\[Z_1 = 0.5 [b + D] [E_+ - 1] [1 - G_+ E_+]^{-1} a^{-1} \]
\[= 0.5 [b + D] [E_+ - 1] [1 + [b + D][-b + D]^{-1} E_+]^{-1} a^{-1} \]
\[= 0.5 [b + D] [E_+ - 1][-b + D][-b + D] + [b + D] E_+]^{-1} a^{-1} \]
\[(24) \]

and:

\[Z_2 = 0.5 [b - D] [E_- - 1] [1 - E_- E_-]^{-1} a^{-1} \]
\[= 0.5 [b - D] [E_- - 1] [1 - [b - D][-b - D]^{-1} E_-]^{-1} a^{-1} \]
\[= 0.5 [b - D] [1 - E_-] E_-^{-1}[-b - D][-b - D] + [b - D] E_-^{-1} a^{-1} \]
\[= 0.5 [b - D] [1 - E_-][-b - D][-b - D] E_-[-b - D]^{-1} a^{-1}, \]
\[(25) \]

3. Integration of Riccati solutions

Corollary R3. Riccati equation:

\[dB / dt = 0.5 \sigma^2 B^2 - (b - i k \rho \sigma) B - 0.5 k (k + i), \]
\[(26) \]

with initial condition:

\[B(0) = 0, \]
\[(27) \]

has solutions:

\[B(t) = S [1 - E] [1 - G E]^{-1}, \]
\[(28) \]

where:

\[S = [b - i k \rho \sigma - D] \sigma^2, \]
\[D = [(b - i k \rho \sigma)^2 + \sigma^2 k (k + i)]^{0.5}, \]
\[G = [b - i k \rho \sigma - D] [b - i k \rho \sigma + D]^{-1}, \]
\[E = \exp(-D t). \]

Proof: In Lemma R2 let:

\[Z \leftarrow B, \]
\[x \leftarrow t, \]
\[b \leftarrow -[b - i k \rho \sigma], \]
\[c \leftarrow -0.5 k (k + i), \]
\[(33) \]
\[(34) \]
\[(35) \]
\[(36) \]
Lemma R4. If B is solution of Riccati equation:

$$\frac{dB}{dt} = 0.5 \sigma^2 B^2 - (b - i k \rho \sigma) B - 0.5 k (k + i), \quad (38)$$

with initial condition:

$$B(0) = 0, \quad (39)$$

then:

$$\int B(t) \, dt = S \left[t + (G - 1) G^{-1} D^{-1} \log(1 - G E) + K \right], \quad (40)$$

where K is a constant and:

$$S = [b - i k \rho \sigma - D] \sigma^2, \quad (41)$$
$$D = [(b - i k \rho \sigma)^2 + \sigma^2 k (k + i)]^{0.5}, \quad (42)$$
$$G = [b - i k \rho \sigma - D] [b - i k \rho \sigma + D]^{-1}, \quad (43)$$
$$E = \exp(-D t). \quad (44)$$

Proof. With notation from Lemma R3, will have:

$$\int B(t) \, dt = \int S \left[(1 - E) [1 - G E]^j \right] \, dt = S \left[(1 - E) [1 - G E]^j \right] \, dt$$
$$= S \left[(1 - G E) + (G - 1) E \right] [1 - G E]^j \, dt = S \left[1 + [(G - 1) E] [1 - G E]^j \right] \, dt$$
$$= S \left[t + (G - 1) G^{-1} D^{-1} \right] G D E [1 - G E]^j \, dt = S \left[t + (G - 1) G^{-1} D^{-1} \log(1 - G E) + K \right]. \quad (45)$$

Corollary R5. If B_j, $j=1,m$, are solutions of equations:

$$\frac{dB_j}{dt} = 0.5 \sigma_j^2 B_j^2 - (b_j - i k \rho_j \sigma_j) B_j - 0.5 k (k + i), \quad j=1,m, \quad (46)$$

with initial conditions:

$$B_j(0) = 0, \quad j=1,m, \quad (47)$$

then next ODE:

$$\frac{dA}{dt} = \sum_{j=1,m} b_j \theta_j B_j \quad (48)$$

with initial condition:

$$A(0) = 0 \quad (49)$$

will be:

$$A(t) = \sum_{j=1,m} b_j \theta_j [S_j t - 2 \sigma_j^2 \log((1 - G_j E_j) / (1 - G_j))], \quad (50)$$

where:
\[D_j = \left((b_j - i k \rho_j \sigma_j)^2 + \sigma_j^2 (k + i) \right)^{0.5}, j=1,m \]
(51)

\[E_j = \exp(-D_j t), j=1,m \]
(52)

\[S_j = [b_j - i k \rho_j \sigma_j - D_j] \sigma_j^2, j=1,m \]
(53)

\[G_j = [b_j - i k \rho_j \sigma_j - D_j] [b_j - i k \rho_j \sigma_j + D_j]^{-1}, j=1,m \]
(54)

Proof. Apply Lemma R4 and will obtain:

\[A = \left\{ \sum_{j=1,m} b_j \theta_j B_j \right\} dt = \sum_{j=1,m} b_j \theta_j \int B_j \, dt \]

\[= \sum_{j=1,m} b_j \theta_j S_j [t + (G_j - 1) G_j^{-1} D_j^{-1} \log(1 - G_j E_j) + K_j] + K. \]
(55)

Now, from initial condition for A(0) obtain:

\[\theta = \sum_{j=1,m} b_j \theta_j S_j [(G_j - 1) G_j^{-1} D_j^{-1} \log(1 - G_j) + K_j] + K, \]
(56)

wherefrom will obtain integration constant K as:

\[K = - \sum_{j=1,m} b_j \theta_j S_j [(G_j - 1) G_j^{-1} D_j^{-1} \log(1 - G_j) + K_j]. \]
(57)

Return to solution with replacing K:

\[A = \sum_{j=1,m} b_j \theta_j S_j [t + (G_j - 1) G_j^{-1} D_j^{-1} \log(1 - G_j E_j) + K_j] \]

\[- \sum_{j=1,m} b_j \theta_j S_j [(G_j - 1) G_j^{-1} D_j^{-1} \log(1 - G_j) + K_j] = \sum_{j=1,m} b_j \theta_j S_j [t + (G_j - 1) G_j^{-1} D_j^{-1} \log(1 - G_j E_j) + K_j] - \sum_{j=1,m} b_j \theta_j S_j [S_j t + S_j (G_j - 1) G_j^{-1} D_j^{-1} \log((1 - G_j E_j) / (1 - G_j))] \]
(58)

Because:

\[S_j (G_j - 1) G_j^{-1} D_j^{-1} = [b_j - i k \rho_j \sigma_j - D_j] \sigma_j^{-2} [b_j - i k \rho_j \sigma_j - D_j] [b_j - i k \rho_j \sigma_j + D_j]^{-1} \]

\[- [b_j - i k \rho_j \sigma_j + D_j] D_j^{-1} = \sigma_j^{-2} [b_j - i k \rho_j \sigma_j - D_j] [b_j - i k \rho_j \sigma_j + D_j]^{-1} \]

\[- [b_j - i k \rho_j \sigma_j + D_j] D_j^{-1} = \sigma_j^{-2} [b_j - i k \rho_j \sigma_j - D_j] [b_j - i k \rho_j \sigma_j + D_j]^{-1} \]

\[= \sigma_j^{-2} [-2 D_j] D_j^{-1} = -2 \sigma_j^{-2}, \]
(59)

then:

\[A = \sum_{j=1,m} b_j \theta_j [S_j t - 2 \sigma_j^{-2} \log((1 - G_j E_j) / (1 - G_j))] \]
(60)

4. Next steps

Next step is to build characteristic function (Christoffersen, Heston & Jacobs, 2009) based on affine form of process. Identifying of constants in affine form in part of characteristic function will be an appeal at our results in 3rd paragraph. After obtaining characteristic functions, using
Carr-Bakshi-Medan theorem we can build an analytic solution for european call pricing problem in multi-Heston model.

5. Acknowledgment
This paper has been financially supported within the project entitled “Routes of academic excellence in doctoral and post-doctoral research, contract number POSDRU/159/1.5/S/137926, beneficiary: Romanian Academy, the project being co-financed by European Social Fund through Sectoral Operational Programme for Human Resources Development 2007-2013.

References