Black-Scholes formula - a Heston approach

Bogdan Patrut
Vasile Alecsandri University of Bacau, Faculty of Sciences, Romania
bogdan@edusoft.ro

Tiberiu Socaciu
Stefan cel Mare University of Suceava, Faculty of Economics and Public Administration, Romania
tibisocaciu@yahoo.com

Abstract
In this paper we will compare Black-Scholes formula with a particular case of Heston formula, both solutions of the same problem.

Keywords: Black-Scholes model, Heston model, comparing analytic solutions.

1. Introduction
As an extension of Black and Scholes (1973) model:

\[dS = \mu S \, dt + \sigma^{0.5} S \, dW, \quad (1) \]

where
a) W is an Wiener process;
b) \(\mu \) is a constant named drift;
c) \(\sigma \) is a constant named volatility;
d) S is a process for a traded asset.

Steven and Heston (1993) define a new model with a stochastic volatility, see equation (2):

\[dS = \mu S \, dt + \sqrt{\nu} S \, dW \\
\frac{d
u}{dt} = \theta (\sigma - \nu) \, dt + \xi \nu^{0.5} \, dB, \quad (2) \]

where:
a) \(\omega \) is long term of volatility;
b) \(\theta \) is return factor to mean of volatility (\(\sigma \));
c) \(\xi \) is volatility of volatility;
d) B and W are Wiener standard processes \(\rho \)-correlated;
e) S is a stochastic process for a traded asset;
f) \(\nu \) is a stochastic process for volatility.

This model was extended by Christoffersen, Heston and Jacobs (2009) as a model with two stochastic semi-volatilities. In our opinion, this model can be generalized as a stochastic model with \(q \) (\(q>0 \)) stochastic partial-(or semi-)volatilities.

2. Solutions of tho models in mirror

<table>
<thead>
<tr>
<th>SDE for BS model</th>
<th>(dS = \mu S , dt + \sigma^{0.5} S , dW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic solutions for european calls</td>
<td>(V(s,t) = N(d_1) S - N(d_2) E \exp(-r (T-t)))</td>
</tr>
<tr>
<td>(d_1 = \sigma^{1} (T-t)^{0.5} [\ln(S/E) + (r + 0.5 \sigma^2)(T-t)])</td>
<td></td>
</tr>
<tr>
<td>(d_2 = \sigma^{1} (T-t)^{0.5} [\ln(S/E) + (r - 0.5 \sigma^2)(T-t)])</td>
<td></td>
</tr>
</tbody>
</table>
with E strike with BS model

| $N(x) – pdf of N(0,1)$ distribution |

Official references for model and analytic solutions for BS model

| (Black, F. & Scholes, M., 1973) |

SDEs for H model

| $dS = \mu S dt + \sqrt{v} S dW$
| $dv = \theta (\sigma - v) dt + \xi \sqrt{v} dB$ |

Analytic solutions for European calls with E strike with H model

| $V(s, v, t) = S P_1 - E \exp(-r(T-t)) P_2$
| $P_j = \frac{1}{2} + \frac{\varphi}{\pi} \int \frac{\exp(i \varphi \log(E)) f_j(x, v, t, \varphi)}{i \varphi} d\varphi$
| $f_j(x, v, t, z) = \exp(C_j(T-t, z) + D_j(T-t, z) z + i z x)$
| $C_j(t, z) = rz_i t + a [(b_1 - \rho \xi z i + d_j) t - 2 \log(1 - g_j \exp(d_j r))]$
| $D_j(t, z) = [(b_2 - \rho \xi z i + d_j) [1 - \exp(d_j r))] \xi^2 [1 - \exp(d_j r))]^{-1}$
| $g_j = [(b_1 - \rho \xi z i + d_j) [1 - \exp(d_j r))] \xi^2 [1 - \exp(d_j r))]^{-1}$
| $d_j = [(b_2 - \rho \xi z i + d_j) [1 - \exp(d_j r))] \xi^2 [1 - \exp(d_j r))]^{-1}$
| $u_1 = \frac{1}{2}$
| $u_2 = -\frac{1}{2}$
| $a = k \theta$
| $b_1 = k + \lambda - \rho \xi$
| $b_2 = k + \lambda$
| $j = 1, 2$ |

Official references for model and analytic solutions for H model

| (Steven & Heston, 1993) |

3. Links between solutions?

We can point that Heston model is a generalization of Black-Scholes model. For

\[
\begin{align*}
v &= \sigma \quad (3) \\
dv &= 0 \quad (4)
\end{align*}
\]

the two models are identical.

But

\[
\begin{align*}
dv &= 0 \quad (5)
\end{align*}
\]

is same with

\[
\theta = \xi = 0, \quad (6)
\]

that means:
\[a = k \theta = 0, \quad (7) \]

\[b_1 = k + \lambda - \rho \xi = k + \lambda = b_2, \quad (8) \]

\[d_j = (b_j - \rho \xi z_i)^2 - \xi^2 (2 u_j z_i - z_i^2))^{0.5} = (b_j - \rho \xi z_i)^2 \xi^{0.5} = |b_j|, \quad (9) \]

\[g_j = [b_j - \rho \xi z_i + d_j] [b_j - \rho \xi z_i - d_j]^{-1} = [b_j + |b_j|] [b_j - |b_j|]^{-1} = 0, \quad (10) \]

if assume that

\[k + \lambda < 0 \]

\[D_j(t, z) = [(b_j - \rho \xi z_i + d_j) [1 - \exp(d_j r))] \xi^2 [1 - \exp(\xi)]^{-1} = [b_j + |b_j|] [1 - \exp(|b_j| r))] \xi^2 [1 - \exp(|b_j| r))]^{-1} = 0, \quad (11) \]

if assume that

\[[b_j + |b_j|] \xi^2 = 0/0 = 0, \quad (12) \]

\[C_j(t, z) = r z i t + a [(b_j - \rho \xi z_i + d_j) t - 2 \log(1 - g_j \exp(d_j r)) + 2 \log(1 - g_j)] \xi^2 = r z i t, \quad (13) \]

if assume that

\[+ a \xi^2 = 0/0 = 0. \quad (14) \]

\[f_j(x, v, t, z) = \exp(C_j(T - t, z) + D_j(T - t, z) z + i z x) = \exp(r z i t + i z x) \]

\[P_j = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty \frac{\exp(i x \log(E)) f_j(x, v, t, \varphi)}{i \varphi} \, d\varphi = \frac{1}{2} + \int_0^\infty \frac{\exp(i x \log(E)) \exp(r z i t + i x)}{i \varphi} \, d\varphi \]

\[+ i z x) i^{-1} z^{-1} \right] dz = \frac{1}{2} + \int_0^\infty \cos(z \log(E)) \sin(z \log(E)) \cos(r z t + z x) \]

\[+ i \sin(r z t + z x) i^{-1} z^{-1} \right] dz = \frac{1}{2} + \int_0^\infty \sin(z \log(E)) \cos(r z t + z x) + \sin(z \log(E)) \cos(r z t + z x) \]

\[z^{-1} \right] dz = \frac{1}{2} + \int_0^\infty \sin(z \log(E) + r z t + z x) \right] z^{-1} \left. dz. \quad (15) \]

4. Comments and further works

We expected that the two solutions are identical. Because not getting the same result on the two different routes, results that Heston solution has a little inconsistency on some particular cases, like \(\xi = 0 \) (we use that 0/\(\xi = 0! \)). Therefore, a revision of the solution Heston by treating individual cases. We intend to do so in the future.

5. Acknowledgment

This paper has been financially supported within the project entitled “Routes of academic excellence in doctoral and post-doctoral research, contract number POSDRU/159/1.5/S/137926, beneficiary: Romanian Academy, the project being co-financed by European Social Fund through Sectoral Operational Programme for Human Resources Development 2007-2013.
References

